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ABSTRACT
Personalized hashtag recommendation methods aim to suggest
users hashtags to annotate, categorize, and describe their posts.
The hashtags, that a user provides to a post (e.g., a micro-video), are
the ones which in her mind can well describe the post content where
he/she is interested in. It means that we should consider both users’
preferences on the post contents and their personal understanding on
the hashtags. Most existing methods rely on modeling either the in-
teractions between hashtags and posts or the interactions between
users and hashtags for hashtag recommendation. These methods
have not well explored the complicated interactions among users,
hashtags, and micro-videos. In this work, towards the personal-
ized micro-video hashtag recommendation, we propose a Graph
Convolution Network based Personalized Hashtag Recommenda-
tion (GCN-PHR) model, which leverages recently advanced GCN
techniques to model the complicate interactions among <users,
hashtags, micro-videos> and learn their representations. In our
model, the users, hashtags, and micro-videos are three types of
nodes in a graph and they are linked based on their direct associa-
tions. In particular, the message-passing strategy is used to learn
the representation of a node (e.g., user) by aggregating the message
passed from the directly linked other types of nodes (e.g., hashtag
and micro-video). Because a user is often only interested in certain
parts of a micro-video and a hashtag is typically used to describe
the part (of a micro-video) that the user is interested in, we leverage
the attention mechanism to filter the message passed from micro-
videos to users and hashtags, which can significantly improve the
representation capability. Extensive experiments have been con-
ducted on two real-world micro-video datasets and demonstrate
that our model outperforms the state-of-the-art approaches by a
large margin.
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1 INTRODUCTION
In social networks, such as Twitter1 and Instagram2, hashtags are
frequently used to annotate, categorize, and describe the posts ac-
cording to users’ preferences. They may consist of any arbitrary
combination of characters led by a hash symbol ‘#’ (e.g. #Puppy
and #thegoodlife). Hashtags are created by users, and they hence
can be treated as the self-expression of users, conveying the users’
preferences on posts and their usage styles of hashtags. With these
hashtags, users can easily search and manage their historical posts
and track others’ posts. Moreover, studies have shown that hash-
tags can provide valuable information about several tasks, such as
sentiment analysis [39] and video understanding [35]. However,
due to the inconvenient typing on smartphones, only sparse users
are willing to provide hashtags to their posts (e.g. micro-videos).
According to the statistics3, by September 2018, more than 33 mil-
lion micro-videos without any hashtag are uploaded per day on
Instagram. Therefore, personalized hashtag recommendation has
attracted considerable attention from industrial and academic com-
munities.

In recent years, several methods have been proposed to auto-
matically suggest appropriate hashtags to users rely on their posts’
content. Pioneer efforts [10, 11, 32, 33] view personalized hashtag
recommendation as a multi-class classification or information re-
trieval problem to predict the hashtag. For instance, Tran et al. [33]
presented a hashtag recommendation method which leverages the

1https://twitter.com/.
2https://www.instagram.com/.
3https://www.omnicoreagency.com/instagram-statistics/.
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Figure 1: Exemplar demonstration of user preference. Two
users publish similar micro-videos with different hashtags.

historical tweets, used hashtags, and social interaction to profile
the users, then searched the similar users’ tweets for extracting the
hashtags. Denton et al. [11] used metadata (e.g., age, gender, etc.)
to characterize users, and integrated users’ representations with
features of their posts to infer the categories. Nevertheless, these
methods ignore the interactions between users and hashtags. For
example, the hashtag ‘#rock’ may be annotated to totally differ-
ent images by music fans and mountaineers. Users indeed always
have their own preferences on hashtag usages. Being aware of this
problem, Alvari [1] applied the matrix factorization based collab-
orative filtering (CF) method to model the interactions between
users and hashtags for personalized hashtag recommendation. Fur-
thermore, considering the inherent subjective of the hashtag, Veit
et al. [34] trained a user-specific hashtag model on image-user-
hashtag triplets, by taking the hashtag usage patterns of users into
account. However, this method has not well exploited the post con-
tent, which contains rich information about user preference and
hashtag semantics.

Although the CF-based methods linearly model interactions
among users, hashtags, and posts, they merely capture the user-
specific hashtag usage patterns rather than the representation of the
user preference and hashtag semantic, while the latter is the core
of personalized hashtag recommendation. The hashtag semantic
should be consistent with the corresponding part of post content,
which in turn is the interested part of the user. For example, as
shown in Figure 1, different users may annotate different hashtags
for similar micro-video according to their preferences. Considering
this fact, the user preference and hashtag semantic representation
have complicated interaction with posts’ features. Therefore, how
to exploit such complicated interactions to represent the user pref-
erence and hashtag semantic is nontrivial. Especially, the abundant
and multimodal information of micro-videos makes hashtag person-
alized recommendation even more challenging [25, 26, 29]. To deal
with the aforementioned challenge, we propose a novel graph con-
volutional network (GCN) based method to model such complicated
interactions for micro-video hashtag personalized recommenda-
tion, as illustrated in Figure 2. In our model, the users, hashtags,
and micro-videos are three types of nodes in a graph and they are

linked based on their direct associations. In other words, user nodes
are connected to their historical micro-video nodes and used hash-
tag nodes, and hashtag nodes are connected to their accompanied
micro-video nodes and corresponding user nodes. Based on this
graph, our model represents the user nodes and hashtag nodes
using the graph convolutional techniques.

In particular, based on the message-passing idea [3], the repre-
sentation of a node can be learned based on the message passed
from its neighbor nodes. In our model, the representation of a user
node is learned by aggregating the message from her neighbor
hashtag and micro-video nodes; and the representation of a hash-
tag is learned based on the message from its neighbor user and
micro-video nodes. With the observations of that, a user is often
only interested in certain parts of a micro-video and a hashtag is
typically used to describe a particular part of a micro-video, we
deem that the message passed from a micro-video to its neighbor
user or hashtag is redundant. To solve this problem, we employ the
attentionmechanism to filter the information related to the user and
hashtag. Specifically, our model uses the hashtag representation to
filter the micro-video information in the corresponding user node
representation, since hashtags are used by users to express their
interests in the micro-video. Analogous, the representation of user
preferences are used to filter the micro-video information to model
the hashtag semantics, because the user preferences can be used to
identify which parts in the micro-video are tagged by the hashtags.
Based on this design, our model can achieve better user and hashtag
representation learning. Thereafter, our model future learns the
user-specific micro-video features and user-specific hashtag seman-
tics with obtained representations of user preference and hashtag
semantic, which are then used for personalized hashtag recommen-
dation for micro-videos. To verify the effectiveness of our model,
we perform extensive experiments on two micro-video benchmark
datasets. The experimental results show that our proposed model
outperforms several state-of-the-art approaches.

The main contributions of this work are threefold:
• To the best of our knowledge, this is the first workwhich attempts
to design a personalized hashtag recommendation method for
micro-videos. Our model can comprehensively model the inter-
actions between users, hashtags, and micro-videos for hashtag
recommendation.

• We design a novel GCN based hashtag recommendation method.
In particular, we introduce the attention mechanism to filter the
redundant message passed from micro-videos to users and hash-
tags in the graph, which can significantly enhance the learning
of user and hashtag representations.

• We conduct extensive experiments on two real-world micro-
video datasets demonstrate the superiority of our method over
several state-of-the-art methods. In addition, we released our
codes, datasets, and parameters to inspire other researchers4.

2 RELATEDWORK
In this section, we mainly review the studies that are most related
to our work, including hashtag recommendation and graph convo-
lutional network.

4https://github.com/weiyinwei/GCN_PHR.
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Figure 2: Schematic illustration of our proposed graph-based convolutional network. In this graph, we treat users, hashtags
and micro-videos as nodes. We use two edges to link them if a user annotates a micro-video use a hashtag.

2.1 Hashtag Recommendation
Due to the widespread use of hashtags on various social platforms,
hashtag recommendation has attracted increasing attention in re-
cent years and many methods [40, 41] have been proposed. Those
methods can be broadly grouped into two categories: 1) the ones
based on the interactions between hashtags and posts; and 2) the
ones based on the interactions between users and posts.

Methods in the first category attempt to learn the representation
of hashtags based on their corresponding posts, and then recom-
mend hashtags according to the post content. For example, Zhang
et al. [45] assumed that hashtag and textual content are two differ-
ent descriptions of the same thing. Based on that, they proposed
a topical translation model, which extracts topics from contents
and translates them to the hashtags, to recommend hashtags for
microblogs. Dey et al. [12] regarded the hashtag recommendation as
the word prediction task. Specifically, a hashtag is treated as a word
in tweets and then the word-embedding techniques are applied to
learning the representation of hashtags and predicting hashtags in
tweets. Nevertheless, abovementioned hashtag recommendation
methods ignore the user-related factors while recommending hash-
tags, such as user preference and language habit. In fact, some users
may use different hashtags to describe the same content (i.e., syn-
onyms) and some may use the same hashtag to describe different
contents (i.e., polysemy). Taking users into account, Veit et al. [34]
applied the three-way tensor product to learning the user-specific
representations for hashtags. The learned representations are then
used to measure the similarity scores between hashtags and posts.
However, this method merely captures the user preferences on
hashtags while ignores user interest in the post content. Different
from these methods, our model learns both the user-specific hash-
tag representation and user-specific post representations, which
are then used to compute the user-specific similarity score of each
post and hashtag pair.

Methods in the second group treat the hashtag recommendation
as a classification or prediction problem by learning the interactions
between the user preference and post content. Denton et al. [11]

took the user demographic information into consideration (e.g., age,
gender, etc.) to model user preferences, which are combined with
image features and then mapped into the same embedding space
with hashtags. In this space, the hashtags are matched with the
user-image combination representations for the recommendation.
Rawat et al. [32] fed the integration of user representation and image
features into a deep neural network to predict hashtags for images.
In this model, they considered the contextual preferences of users on
images (e.g. time and geo-location) in user representation learning.
Recently, Park et al. [10] modeled user preferences based on their
most frequently used hashtags in historical posts and devised a
Context Sequence Memory Network for hashtag prediction based
on user preferences and image features. All the above methods
model user preferences on the global level of a post, however, it is
common that a user is interested in a particular part of a post and
provides a hashtag according to the interested part, especially for
the posts with rich content (such as micro-videos). In this work, we
will model the user preference based on the content interests them
in micro-videos and learn user-specific micro-video representations
according to content that interests them.

2.2 Graph Convolutional Networks
Graph convolutional networks have been widely used in various
applications, such as computer vision [14, 20, 23, 27, 44], disease
or drug prediction [22, 31, 46], and Chemistry [13, 15, 24, 43]. Due
to their powerful capability in representation learning, GCNs have
also been exploited to model the interactions between users and
items [21, 28, 30, 37, 38] for recommendation. For example, a gen-
eral inductive GCN framework GraphsSAGE [16], which learns
node representation based on both the topological structure of
graph and node feature information, has been verified in citation
recommendation and video recommendation. However, GCN-based
recommendation models often need to store the whole graph in
GPU memory, which limits their applications in large-scale rec-
ommendation tasks with billions of items and millions of users.
To tackle this issue, Ying et al. [42] proposed an efficient GCN
algorithm PinSage which combines efficient random walks and



graph convolutions to learn node representations. This method has
been demonstrated to be scalable for large-scale recommendation
tasks. From a different perspective, Berg et al. [3] considered rec-
ommendation as link prediction on graphs and proposed a novel
graph auto-encoder framework named Graph Convolutional Ma-
trix Completion (GCMC). Based on a proposed message-passing
model, this method uses a graph convolution layer in the encoder to
learn the representations of users and items and then leverages the
representations to reconstruct the rating links through a bilinear
decoder.

Different from the previous works which typically consider two
types of nodes, we need to model the interactions among three
kinds of nodes (i.e., user, hashtag, micro-video) in this work. As
in GCMC, we also adopt the message-passing model to learn the
interaction among the different types of nodes. The difference is
that we propose to use the attention mechanism to filter the mes-
sage from micro-videos to users and hashtags. To the best of our
knowledge, this is the first work to use GCN-model for personalized
hashtag recommendation and also the first attempt to apply GCN
techniques for graphs with three types of nodes.

3 OUR PROPOSED METHOD
3.1 Problem Setting and Model Overview
3.1.1 Problem setting. Before describing ourmethod, wewould like
to introduce the problem setting first. Given a dataset with a micro-
video setV , a hashtag setH , and a user setU, in which a micro-
video vk ∈ V is uploaded by a user ui ∈ U and some hashtags
hj ∈ H are provided byui tovk . Based on this dataset, the goal is to
learn a personalized hashtag recommendation model, which could
automatically recommend hashtags fromH to a new micro-videov
uploaded by a useru. Because we would like that the recommended
hashtags will be adopted by the user, the recommended hashtags
should not only match the micro-video contents but also fit the
personal preferences of users. To achieve this goal, we apply the
graph convolutional networks tomodeling the complex interactions
among three types of entities: users, hashtags, and micro-videos.

Let G = (W, E) be an undirected graph, where W denotes the
set of nodes and E is the set of edges. Specifically,W consists of
three types of nodes, which represents the three types of entities:
users ui ∈ U with i ∈ {1, . . . ,Nu }, hashtags hj ∈ H with j ∈

{1, . . . ,Nh }, micro-videos vk ∈ V with k ∈ {1, . . . ,Nv }, and U ∪

H ∪ V = W. Whereinto, V ∈ RNv×D is a feature matrix with
vk ∈ RDv representing the feature vector of micro-video node vk .
Dv is the length of the feature vector. For the ease of presentation,
i , j, and k will be assigned to index user, hashtag, and micro-video,
respectively. When an interaction exists between two nodeswi and
wk (e.g, a user ui uploads a micro-video vk ), there will be an edge
eik = (wi ,wk ) ∈ E to link the two nodes in the graph. In our task,
we only consider the interactions among different types of nodes,
namely, user-hashtag, hashtag-microvideo, and microvideo-user.
Let Hi denote the hashtag neighbors of user ui and Vi denote the
micro-video neighbors of user ui , namely, Hi is the hashtags set
that ui used to tag her uploaded micro-video setVi .

3.1.2 Model overview. When users provide hashtags to describe
their uploaded micro-videos, they will select the hashtags which
(in their minds) can be used to describe the micro-video contents that

interest them. It implies that for the same micro-video, different
users may be interested in different content and even two users are
interested in the same content of a micro-video, it is still possible
that they will use different hashtags due to their own preferences on
hashtags. In other words, for each pair of <micro-video, hashtag>,
the suitability score of the hashtag to the micro-video depends on
the interests of the target user in the micro-video and personal
opinions on the hashtag. In light of this, we propose a Graph Con-
volution Network based Personalized Hashtag Recommendation
model (GCN-PHR for short). Given a micro-video vk uploaded by
the user ui , for each candidate hashtag hj ∈ H , our model will (1)
generate the representations v̄ik and h̄ij for micro-video vk and the
hashtag hj respectively based on this user ui ’s preferences, and
then (2) compute the suitability score (or similarity score) of hj
with respect to vk based on v̄ik and h̄ij . Therefore, the core of our
model is to learn the user-specific micro-video representation v̄ik
and user-specific hashtag representation h̄ij .

3.2 GCN-based Representation Learning
Intuitively, learning a user-specific micro-video representation v̄ik
needs to model the interaction between the user preference on micro-
videos uvi and the target micro-video representation vk; similarly,
learning a user-specific hashtag representation h̄ij is to model the
interaction between the user preference on hashtags uhi and the target
hashtag representation hj. Thinking one step further, the hashtags
that a user used to tag micro-videos actually reflect her preference
on the micro-videos to some extent; and in turn, the micro-videos
that a user tagged also contain her preference on the hashtags. In
other words, Hi and Vi mutually represent each other and also
reflect the user preference on each other. Therefore, it is beneficial
to consider uhi into the modeling of v̄ik ; and vice versa. In light of
this, the user preference ui is modeled based on both uvi and uhi ,
and then used to learn v̄ik and h̄ij .

Specifically, on the constructed graph the model, we adopt the
message-passing idea [3] to learn the user preference on hashtags
uhi and micro-videos uvi based on the user ui ’s hashtag neighbors
Hi and micro-video neighbors Vi , respectively. After that, uhi and
uvi are aggregated to learn the user preference ui. Finally, the v̄ik is
learned based on ui and vk , and h̄ij is learned based on ui and hj . In
the following, we introduce the learning of those representations
sequentially.

3.2.1 User preference on hashtags. In our model, a user ui pref-
erence on hashtags uhi is modeled by accumulating the incoming
messages from all the neighbor hashtags Hi . According to the
idea of message-passing, the message transferred from a hashtag
hj ∈ Hi to the user ui is defined as:

mhj→ui =Wu
hhj , (1)

where mhj→ui denote the message vector from hashtag hj to user
ui , and Wu

h is the weight matrix which maps the hashtag vector
into the user embedding space. Based on this, uhi is defined as:

uhi = ϕ(
1

|Hi |

∑
hj ∈Hi

mhj→ui ) , (2)



ϕ(·) is the activation function and |Hi | denotes the number of
neighbor hashtags.

3.2.2 User preference on micro-videos. The user preference on
micro-videos uvi can be learned in the same way, namely, by accu-
mulating the messages form all the neighbor videosVi . The passed
message vk from a micro-video represents all the contents in the
video vk . Notice that a micro-video contains a sequence of video
frames with rich information. For a specific micro-video, a user may
be only interested in its certain parts. To accurately model the user
preference on micro-videos, it is crucial to identify which part in
each micro-video attracts the attention of the user. Fortunately, the
hashtags of a micro-video are usually provided based on the content
interests the user in this micro-video. Therefore, the hashtags can
better characterize the user preference on micro-videos. In light of
this, in our model, the message from each video vk to a user ui is
determined by its hashtags provided by the user. Given a hashtag
hj of a video vk , we estimate its similarity by,

sjk = д(hj ,W
h
vvk ), (3)

where Wh
v is a weight matrix and д(·) is a similarity function to

measure the similarity of vectors. Different functions can be applied
here (e.g., cosine function) and we use a fully connected layer to
implement the function.

A hashtag can be used for many micro-videos by the user. Let
Vi, j be the set of micro-videos taggedwith the hashtaghj by userui .
we normalize the similarity score sjk to obtain the relative similarity
between a video and a hashtag based on the user preference.

α jk =
exp(sjk )∑

vk′ ∈Vi, j exp(sjk ′)
, (4)

α jk is the normalized similarity score. Let Hi,k be the hashtag set
of user ui provided to micro-video vk , the message of a video vk
passes to a user ui is defined as:

mvk→ui =
∑

hj ∈Hi,k

α jk ·Wu
vvk , (5)

It indicates that the message from vk passes to the user ui is de-
pendent on vk ’s aggregated similarity to all the hashtags that ui
provides.

Similar to Eq. 2, the user preference on micro-videos is the aggre-
gation of the messages from all the neighbor micro-videos, namely,

uhi = ϕ(
∑

vk ∈Vi

mvk→ui ) . (6)

3.2.3 User representation learning. As discussed above, the user
preference is obtained by combining the user preference on hash-
tags and on micro-videos. Many combination methods can be ap-
plied here, such as concatenation [9], addition [6], or more com-
plicate deep fusion models [36]. In this work, we try two methods:
network-based fusion and transformation-based summation.

Neural network-based fusion. In this method, uvi and uhi are
first concatenated and then fed into a fully connected layer to obtain
the final representation of the user preference. Formally, the user
preference is obtained by,

ui = ϕ(Wnn [uvi , u
h
i ] + bnn ), (7)

where [·, ·] is the concatenation operator; Wnn and bnn indicate
the learnable weight matrix and bias vector in the fully connected
layer, respectively.

Transformation-based summation. In this method, uvi and
uhi are fist transformed into the same space for element-wise sum-
mation. Formally, the user preference is obtained by,

ui =Wv
u uvi +W

h
u uhi (8)

whereWv
u andWh

u denote the transformation matrices.

3.2.4 Hashtag representation learning. The hashtag representation
is learned analogously with user preference learning. Specifically,
for a hashtag hj , its representation is based on both the messages
from all its neighbor users and the messages from all its neigh-
bor micro-videos. The message passed from a user to a hashtag is
computed in the same way as the message passed from a hashtag
to a user, and the message passed from a micro-video to a hash-
tag is computed in a similar way as the message passed from a
micro-video to a user. To avoid the duplication of presentation,
here we skip the detailed steps of how to compute the hashtag
representation in our model.

Further, according to recent work [38], we can easily utilize mes-
sage from multiple-hop neighbors by recursively stacking multiple
layers to enforce the representations.

3.2.5 User-specific micro-video representation. The micro-video
representation vk is directly extracted from the content of the
micro-video vi , which is a concatenation of its visual, acoustic, and
textual features. Detailed information about how to extract those
multimodal features is described in Section 4.1. Based on the user
preference ui and micro-video representation vk , the user-specific
micro-video representation v̄ik is obtained by:

v̄ik = ϕ(Wv vk +W
v
u ui + bv ), (9)

whereWv ,Wv
u and bv denote the weight matrices and bias vector

in the fully connected layer.

3.2.6 User-specific hashtag representation. Analogously, the user-
specific hashtag representation h̄ij is also learned via a fully con-
nected layer based on the user preference ui and hashtag represen-
tation hj ,

h̄ij = ϕ(Wh hj +Wh
u ui + bh ), (10)

where Wv , Wv
u and bv are the weight matrices and bias vector in

the fully connected layer.

3.2.7 Personalized Hashtag Recommendation. Given a new micro-
video vk uploaded by a user ui , the hashtags in H could be rec-
ommended in the descending order of their similarity score with
respect to vk based on based on ui ’s preference. Specifically, the
similarity score is computed by the dot product of the user-specific
hashtag representation h̄ij and the user-specific micro-video repre-
sentation v̄ik , namely, (h̄ij )

T v̄ik .

3.3 Pairwise-based Learning
Similar to the ranking-oriented recommendation algorithm [4, 18],
we adopt the pairwise-based learning method for optimization. To
perform the pairwise ranking, it need to constructs a triplet of one
micro-video vk , one positive hashtag hj , and one negative hashtag



Table 1: Statistics of the evaluation dataset. (#Micro-videos,
#Hashtags, and #Users denote the numbers of micro-videos,
Hashtags, and users, respectively.)

Dataset #Micro-videos #Users #Hashtags
YFCC100M 134,992 8,126 23,054
Instagram 48,888 2,303 12,194

Table 2: Feature summarization of three modalities. (Vi-
sual, Acoustic, and Textual denote the dimensions of visual,
acoustic, and textual modalities, respectively.)

Dataset Visual Acoustic Textual
YFCC100M 2,048 128 100
Instagram 2,048 128 100

h′j , wherehj is a hashtag ofvk andh′j is not. LetR = {(vi ,hj ,h
′
j )} be

the triplet sets for training. The objective function can be formulated
as

arg min
θ

∑
(vk ,hj ,h′j )∈R

− ln ϕ((h̄ij )
T v̄ik − (̄h′ij )

T v̄ik ) + λ ∥Θ∥2
2 , (11)

where λ and Θ represent the regularization weight and the parame-
ters of the model, respectively.

4 EXPERIMENTS
In this section, we first present the experimental settings (i.e. datasets,
baselines, evaluation protocols, and parameter settings), followed
by answering the above three questions and end up with some
visualization examples.
4.1 Experimental Settings
Datasets.We conducted experiments on a public dataset YFCC100M
[34] and our collected Instagram dataset. The characteristics of
these datasets are summarized in Table 1.

YFCC100M.5 The YFCC100M dataset is the largest publicly ac-
cessible multimedia collection, containing the metadata of around
99.2 million photos and 0.8 million videos from Flickr. In our task,
we focus on the personalized micro-video hashtag recommenda-
tion, whereas we crawled video dataset from its API. And we also
collected their user profiles and the annotated hashtags. This even-
tually crawled a dataset of 134, 992 micro-videos, 8, 126 users, and
23, 054 hashtags. Following that, we extracted a rich set of fea-
tures from textual, visual and acoustic modalities. Specially, we
employed FFmpeg6 to extract the keyframes from micro-videos,
and then employed the ResNet50 [17] model pre-trained by Py-
torch7 to extract the visual features. Simultaneously, we separated
audio tracks from micro-videos with FFmpeg, and adopted VG-
Gish [19] to learn the acoustic deep learning features. In addition,
we utilized Sentence2Vector [2] trained with twitter text dataset to
extract the textual features from micro-video descriptions.

Instagram. To construct a micro-video dataset for evaluating
our method, we crawled the micro-video associated with the de-
scription from Instagram. We randomly started with some users
and iteratively crawled the list of users who followed those users. In
such a way, we harvested about 1 million micro-videos, 10 thousand
5https://multimediacommons.wordpress.com/yfcc100m-core-dataset/.
6https://ffmpeg.org/.
7https://pytorch.org/.

users, and 100 thousand hashtags. To evaluate our method, we filter
out the micro-video without any hashtag annotated, and removed
users whose all micro-videos are discarded accordingly. After re-
moving the micro-videos and users, we obtained a micro-video
dataset of 48, 888 micro-videos, 2, 303 users, and 12, 194 hashtags.
Similarly, we perform a similar process to extract the features of
micro-videos in the Instagram dataset. For further clarification, we
summarized the multimodal features of two datasets in Table 2.
Baselines. To evaluate the effectiveness of our model, we compared
our proposed method with several state-of-the-art baselines.

• UTM [11]. The method utilizes a 3-way gating to combine het-
erogeneous features into a learning framework where the model
is conditioned on the user profile. This model learns a joint d-
dimensional embedding space for posts and hashtags.

• ConTagNet [32]. This baseline proposes a convolutional neural
network (CNN) based framework to integrate user profiles with
posts’ content for hashtag prediction. This model consists of two
components: CNN part and neural network part. In the exper-
iment, for the fairness, we leveraged the extracted multimodel
information and fed them into the fully connected network with
the corresponding users’ information to estimate the hashtags.

• CSMN [10]. The method named as Context Sequence Memory
Network (CSMN) which leverages the historical information
as the prior knowledge of users’ vocabularies or writing styles.
Towards this end, the content information extracted from micro-
videos and hashtags users annotated is used as the memory re-
taining the context information. Besides, previously generated
hashtags can be appended into memory to capture long-term in-
formation. With the proposed CNN memory structure, hashtags
which meet the context information can be predicted.

• USHM [34]. This approach develops a user-specific hashtag
model that takes the hashtag usage patterns of a user into account,
and adopts a three-way tensor model to learn user embeddings.
This baseline trains the model on image-user-hashtag triplets
that allow the model to learn patterns in the hashtag usage of
particular users and to disambiguate the learning signal.

Evaluation Protocols and Parameter Settings. We randomly
split the dataset into training, validation, and testing sets with
8:1:1 ratio as in [5, 7, 8], and created the training triples based
on random negative sampling. We used precision, recall, and ac-
curacy to evaluate the recommended results. To train our pro-
posed model, we use the leaky_relu as the activation function
in our model and randomly initialized model parameters with a
Gaussian distribution, optimizing the model with stochastic gra-
dient descent (SGD). We tested the batch size of {128, 256, 512},
the latent feature dimension of {32, 64, 128}, the learning rate of
{0.0001, 0.0005, 0.001.0.005, 0.01} and the regularizer of {0, 0.00001,
0.0001, 0.001, 0.01, 0.1}. In addition, we sample 1, 000 negative hash-
tags for each micro-video in the test process. As the findings are
consistent across the dimensions of latent vectors, if not specified,
we only show the result of D=64, a relatively large number that
returns good accuracy.

4.2 Performances Comparison (RQ1)
The comparative results are summarized in Table 3. From this table,
we have the following observations:



Table 3: Performance comparison between our model and the baselines.

Model YFCC100M Instagram
P@5 P@10 R@5 R@10 A@5 A@10 P@5 P@10 R@5 R@10 A@5 A@10

UTM 0.2469 0.1780 0.3053 0.4108 0.6860 0.7724 0.5193 0.4503 0.2305 0.3659 0.7823 0.8136
ConTagNet 0.3595 0.2441 0.4358 0.5426 0.7856 0.8395 0.4391 0.3863 0.1982 0.3136 0.74.44 0.8178
CSMN 0.3027 0.1897 0.4004 0.4428 0.6403 0.6634 0.5230 0.4691 0.2614 0.3826 0.8246 0.8770
USHM 0.3891 0.2711 0.4865 0.6158 0.8398 0.8877 0.6613 0.5821 0.3402 0.5134 0.9107 0.9365

GCN-PHR 0.4004 0.3053 0.5125 0.6667 0.8403 0.9021 0.6847 0.6286 0.4075 0.5667 0.9134 0.9332
%Improv. 2.90% 12.61% 5.34% 8.30% 0.01% 1.62% 3.54% 7.99% 19.78% 10.38% 0.30% -0.35%

Table 4: Performance comparison between our model and the variants.

Model YFCC100M Instagram
P@5 P@10 R@5 R@10 A@5 A@10 P@5 P@10 R@5 R@10 A@5 A@10

Variant-I 0.3786 0.2745 0.4923 0.6266 0.8335 0.8901 0.6703 0.58330. 3473 0.5232 0.9068 0.9245
Variant-II 0.3829 0.2837 0.5031 0.6401 0.8307 0.8834 0.6765 0.6053 0.3735 0.5398 0.9089 0.9306
Variant-III 0.3801 0.2754 0.4966 0.6312 0.8283 0.8831 0.6725 0.5974 0.3665 0.5274 0.8953 0.9268
GCN-PHR 0.4004 0.3053 0.5125 0.6667 0.8403 0.9021 0.6847 0.6286 0.4075 0.5667 0.9134 0.9332

• Without a doubt, our proposed method achieves the best perfor-
mance on three datasets. Especially, it outperforms the state-of-
the-art baselines over the datasets, verifying the effectiveness of
our model. Furthermore, it shows the rationality of the user pref-
erence and hashtag semantic modeling based on the micro-video
content information.

• The indexes indicate that the USHM is better than the other
baselines for it is the first to consider the hashtag personalized
recommendation. It is beneficial for hashtag recommendation
to capture the hashtag usage pattern of the users based on the
interaction between user and hashtag. However, in comparison,
this method is inferior to the one we proposed. Because the
USHM merely models users’ interactions between hashtags and
posts, instead of profiling them.

• The precision of our method on YFCC grew faster than that on
Instagram, while the increase in recall is just the opposite. These
phenomenons result from the average hashtag number of every
single micro-video is more than YFCC100M.

• In terms of accuracy, our method did not have significant im-
provement over USHM, and even lower in some cases. We sug-
gest that the accuracy merely calculate the ratio of at least one
ground truth hashtag appears in the top K, which results in the
approximation of the results.

• Unexpectedly, the CSMN model shows the worst results on
YFCC100M. The reason for this may be due to the CSMN is
more susceptible to the density of the dataset. To predict the
hashtag, CSMN leverages the previous hashtag to represent the
user. On the sparse dataset, the bias is accumulated during the
whole prediction and causes worse performance.

4.3 Model Study
In this section, we studied the effectiveness of each component of
our proposed model. We listed the following several variants to
compare with the proposed model.

• Variant-I. In this model, we built a user-hashtag-microvideo
graph and performed graph convolution operations on each node

without the attention mechanism. This variant is designed to in-
vestigate the effectiveness of attention mechanism in our model.

• Variant-II. To evaluate the effectiveness of the user preference to
hashtag representation, we discard the user preference attended
on the content information and passed the whole information
from micro-video nodes to the hashtag nodes.

• Variant-III. In contrast to Variant-II, this variant removes the
hashtag guiding the micro-video feature extraction and aggre-
gates the micro-video content information straightway, to evalu-
ate the effectiveness of hashtag to user preference modeling.

In Table 4, we have the following observations:

• As expected, GCN-PHR outperforms other variants, with more
significant improvement on the Instagram dataset. This demon-
strates the effectiveness of the user and hashtag representations.
It is due to that the user preference not only affects the micro-
video features extraction, but influences the hashtag semantic
representations, which is the core of the hashtag personalized
recommendation.

• Comparing Variant-II with Variant-III, we found that the for-
mer is better than the later one. We conjecture that the micro-
video contains abundant information and it is hard to capture the
information from the content to represent the hashtag without
the user preference guiding.

• In terms of the A@5 and A@10, we observed that the methods
have no significant results. This is because that the accuracy
gives a measure of how often at least one of the ground truth
hashtags appears in the top 5 (10) ranked hashtags. It is largely
indifferent to the number of ground truth hashtags.

• We compared the three variants, and the result demonstrates
that the user preference and hashtag representations are im-
proved by content information. In addition, the user preference
and hashtag semantic can help the feature extraction during the
message-passing, facilitating the hashtag and user preference
representations.



USER A

USER B

USER C

Previous Hashtag by User

Previous Hashtag by User

Previous Hashtag by User

#fishing, #america, #birds, #winter, #nature, #outdoors, #cold, #ice, #fish, #hunting, #bass

#foodieblog, #foodielife, #aycarbon, #webergrill, #steaks, #steakdinner, #food

#life, #summertime, #sunny, #tropical, #upcomingartist, #beach, #singing, #beauty

GroundTruth:  # life,  #singer,  #beauty,   #beyou,  # iphone,   #video, 
# lifeisbeautiful,  # nature,  # meditate,  # ocean, # behappy,  # sunset, 
#nevergiveup, #dreams, #singersongwriter,  #beyourself, #beach

UTM: #Repost, #beauty, #singer, #video, #winter

ConTagNet: #telugu,  #Fashionaddict,  #boanoite, #lafayetteco, 
#deadlifts

CSMN: # life, #singer, #singersongwriter, #Beyou, #latina

USHM: #beach, #video, #life, #style, #Singer

Our Model: #beach, #ocean, #sunny, #sea, #beauty

GroundTruth: #fishing, #bass, #largemouthbass, #bassfishing, #winter, 
# peacockbass,  # ocean,  # giveaway,  # lake,  # boat,  # viral,  # hunting, 
#outdoors, #travel

UTM: #dog, #metal, #winter, #travel, #naturelovers

ConTagNet: #nashville, #muscle, #oreo, #viral, #weightloss

CSMN: #fishing, #hunting, #nature, #outdoors, #bass

USHM: #lake, #bass, #fishing, #viral, #Nature

Our Model: #fishing, #boat, #outdoors, #hunting, #forest

GroundTruth: #aycarbon, #saltbae, #steakhouse, #beef, #bbq, #steak, 
#food 

UTM:       #englishtutor, #alternativerock, #aux99, 
#wahllegend

ConTagNet: #food, #fashion, #friends, #beats, #car

CSMN: #foodieblog, #foodielife, #aycarbon, #webergrill, 
#steakdinner

USHM: #webergrill, #aycarbon, #saltbae, #steaks, 
#steakhouse

Our Model: #Foodielife, #Steaks, #beef, #food, #steakdinner

Figure 3: Visualization of hashtag recommended by base-
lines and our model on the Instagram dataset.

4.4 Visualization
To evaluate our method, we randomly selected a number of micro-
videos for visualization testing, taking three specific micro-videos
as examples. In the figure, three micro-videos from different users,
provide the user historical hashtag usage and baseline prediction for
comparison, so as to demonstrate our hypothesis of user hashtag
usage pattern. Whereinto, the hashtag marked red is predicted
accurately, and the tag marked green indicates that the hashtag
has appeared in the historical information, but has not marked the
current micro-video. According to the three examples, we gained
conclusions as following:
• In the first example, it can be seen that our method can accu-
rately recommend the hashtags of ‘#fishing‘, ‘#hunting‘ ‘#boat‘,
and ‘#outdoors‘.Whereinto, ‘#hunting‘, ‘#fishing‘, and ‘#outdoors‘
are all hashtags that users have used before, which shows that our
method has captured the characteristics of user hashtag usage
pattern. USHM and CSMN also recommend ‘#fishing‘, ‘#hunting‘,
and ‘#outdoors‘ based on the correct usage habits of hashtag
users. However, these methods ignore the ’#boat’. This is because
this hashtag does not appear in the user’s historical hashtags, so
it is difficult to recommend it merely based on modeling user’s

hashtag usage habits. Different from these methods, our method
combines and filters the content information to express the hash-
tag, and accurately recommends the ‘#boat‘ to the user.

• As shown in the second example, our model predicts hashtags
‘#steaks‘, ‘#beef‘, and ‘#food‘ to themicro-video, especially, ‘#beef‘
has not been used by users. This exhibits that our method lever-
ages the micro-video content information to represent the hash-
tag semantic, which facilitates the hashtag recommendation to
micro-videos. Moreover, although the model mistakenly recom-
mends ‘#foodielife‘ and ‘#steakdinner‘, we found that they are
fit for the micro-video content and user’s hashtag usage pat-
tern. Therefore, it also demonstrates that our proposed model is
reasonable.

• In the last example, our presented model recommends the third
micro-video with ‘#beach‘, ‘#ocean‘, and ‘#beauty‘. Especially,
the ‘#beauty‘ hashtag is distant with these hashtags, since it is
hard to describe with some fixed information and varying with
the different users. This phenomenon verifies that our hashtag
representation based on content information bridges the gap
between the user’s opinion and the visual, acoustic, and textual
information to some degree.

• Above of all, we observed that our proposed method outperforms
the other baselines, especially for the micro-videos containing
more concepts. We believe that our proposed model can extract
the features from micro-video content information with user
preference and annotate the appropriate hashtags in accord with
the user’s hashtag usage pattern.

5 CONCLUSION
In a real-world scenario, when users provide hashtags to describe
their uploaded micro-videos, they tend to select the hashtags to de-
scribe the micro-video contents that they are interested in. It implies
that for the same micro-video, different users may be interested
in different content and sometimes two users are interested in the
same content of a micro-video, yet they may use different hashtags
based on their personal preferences on hashtags. To model such
complex correlations, we propose a Graph Convolution Network
based Personalized Hashtag Recommendation model. Specifically
given a micro-video uploaded by the user, for each candidate hash-
tag, our model (1) generate the representations for micro-video and
the hashtag respectively based on the user preference, and then (2)
compute the suitability score (or similarity score) of hashtag with
respect to the micro-video based on the user preference. To demon-
strate the effectiveness of our model, we comparatively justified it
over twomicro-video benchmark datasets. The experimental results
show that our proposed model outperforms several state-of-the-art
baselines. In addition, we randomly sample some micro-videos and
visualize the results of our proposed method and several baselines
to verify the performance between the methods.
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