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ABSTRACT
Personalized recommendation plays a central role in many
online content sharing platforms. To provide quality micro-video
recommendation service, it is of crucial importance to consider the
interactions between users and items (i.e., micro-videos) as well as
item contents from various modalities (e.g., visual, acoustic, and
textual). Existing works on multimedia recommendation largely
exploit multi-modal contents to enrich item representations, while
less effort is made to leverage information interchange between
users and items to enhance user representations and further capture
user’s fine-grained preferences on different modalities.

In this paper, we propose to exploit user-item interactions to
guide the representation learning in each modality, and further
personalized micro-video recommendation. We design a Multi-
modal Graph Convolution Network (MMGCN) framework built
upon the message-passing idea of graph neural networks, which
can yield modal-specific representations of users and micro-videos
to better capture user preferences. Specifically, we construct a user-
item bipartite graph in each modality, and enrich the representation
of each node with the topological structure and features of
its neighbors. Through extensive experiments on three public
datasets: Tiktok, Kwai, and MovieLens, we demonstrate that our
proposed model significantly outperforms state-of-the-art multi-
modal recommendation methods.
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1 INTRODUCTION
Personalized recommendation has become a core component in
many online content sharing services, spanning from image, blog
to music recommendation. Recent success of micro-video sharing
platforms, such as Tiktok and Kwai, bring increasing attentions to
micro-video recommendation. Distinct from these item contents
(e.g., image, music) that are solely from a single modality, micro-
videos contain rich multimedia information — frames, sound tracks,
and descriptions — and further involve multiple modalities — the
visual, acoustic, and textual ones [24, 25, 27].

Incorporating such multi-modal information into historical
interactions between users and micro-videos help establish an in-
depth understanding of user preferences:
• There is a semantic gap between different modalities. Taking
Figure 1 as an example, while having visually similar frames,
micro-videos i1 and i2 have dissimilar textural representations
due to different topic words. In such cases, ignoring suchmodality
difference would mislead modeling of item representations.

• A user might have different tastes on modalities of a micro-video.
For example, a user is attracted by the frames, but might turn out
to be disappointedwith its poor sound tracks. Multiple modalities,
hence, have varying contributions to user preferences.

• Different modalities serve as different channels to explore user
interests. In Figure 1, if user u1 cares more about frames, i2 is
more suitable to be recommended; whereas, u1 might click i3 due
to the interested textural descriptions.

Therefore, it is of crucial importance to distinguish and consider
modal-specific user preferences.

However, existing works on multimedia recommendation [8, 17]
mainly treat multi-modal information as a whole and incorporate
them into a collaborative filtering (CF) framework, while lacking
modeling of modal-specific user preferences. Specifically, multi-
modal features of each item are unified as a single representation,
reflecting their content similarity; thereafter, such representations
are incorporated with user and item representations derived
from CF framework, such as MF [29]. For instance, VBPR [17]
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Figure 1: An illustration of modal-specific user preferences.

leverages visual features to enrich ID embeddings of items; ACF [8]
employs the attention mechanism on a user’s history to encode
two-level personal tastes on historical items and item contents
into user representations. Such signals can be summarized as the
paths connecting the target user and item based on historical
interactions [38, 41]. For example, p1 B u1 → i1 → u2 → i2
and p2 B u1 → i1 → u2 → i3 suggest i2 and i3 are likely to
be of interest to u1. However, we argue that these signals are not
sufficient to yield satisfactory performance. The key reason is that
they ignores differences among modalities, further lacks an explicit
modeling of modal-specific preferences of users. For example, in the
visual modality, p1 suggests i2 is more likely to be adopted than i3
in p2; whereas, p2 presents more positive signals for recommending
i3 in the textual modality.

To address the limitations, we focus on information interchange
between users and items in multiple modalities. Inspired by
the recent success of graph convolution networks (GCNs) [14,
22], we use the information-propagation mechanism to encode
high-order connectivity between users and micro-videos in each
modality, so as to capture user preference on modal-specific
contents. Towards this end, we propose a Multi-modal Graph
Convolution Network (MMGCN). Specifically, we construct a user-
item bipartite graph on each modality. Intuitively, the historical
behaviors of users reflect personal interests; meanwhile, the user
groups can also profile items [38, 41]. Hence, in each modality
(e.g., visual), we aggregate signals from the corresponding contents
(e.g., frames) of interacted items and incorporate them into user
representations; meanwhile, we boost the representation of an
item with its user group. By performing such aggregation and
combination operators recursively, we can enforce the user and item
representations to capture signals from multi-hop neighbors, such
that a user’s modal-specific preference is represented well in her
representation. Ultimately, the prediction of a unseen interaction
can be calculated as similarities between the user and micro-
video representations. To demonstrate our method, we validate
the framework over three publicly accessible datasets — Tiktok,
Kwai, and Movielens. Experimental results show that our model
can yield promising performance. Furthermore, we visualized user
preference on different modalities, which shows the inconsistency
of modal-specific preferences.

The main contributions of this work are threefold:

• We explore how information interchange on various modalities
reflects user preferences and affects recommendation performance.

• We develop a new method MMGCN, which employs information
propagation on the modality-aware bipartite user-item graph,

to obtain better user representations based on item content
information.

• Extensive experiments are performed on three public datasets to
demonstrate that our proposed model outperforms several state-
of-the-art recommendation methods. In addition, we released
our codes, parameters, and involved baselines to facilitate other
researchers1.

2 MODEL FRAMEWORK
In this section, we elaborate our framework. As illustrated
in Figure 2, our framework consists of three components —
aggregation layers, combination layers, and prediction layer.
By stacking multiple aggregation and combination layers, we
encode the information interchange of users and items into the
representation learning in each modality. Lastly, we fuse multi-
modal representations to predict the interaction between each user
and each micro-video in the prediction layer. In what follows, we
detail each component.

2.1 Modality-aware User-Item Graphs
Instead of unifyingmulti-modal information, we treat eachmodality
individually. Particularly, we have historical interactions (e.g.,
view, browse, or click) between users and micro-videos. Here
we represent the interaction data as a bipartite user-item graph
G = {(u, i)|u ∈ U, i ∈ I}, where U and I separately denote the
user and micro-video sets. An edge yui = 1 indicates an observed
interaction between user u and micro-video i; otherwise yui = 0.

Beyond the interactions, we have multiple modalities for each
micro-video — visual, acoustic, and textual features. For simplicity,
we usem ∈ M = {v,a, t} as the modality indicator, wherev , a, and
t represent the visual, acoustic, and textual modalities, respectively.
To accurately capture the users’ preferences on a particularmodality
m, we split the bipartite graph Gm from G by keeping the features
in modalitym solely.

2.2 Aggregation Layer
Intuitively, we can utilize the interaction data to enrich the
representations of users and items. To be more specific, historical
interactions of a user can describe her interest and capture the
behavior similarity with others; meanwhile, the user group of a
micro-video can provide complementary data to its multi-modal
contents. We hence incorporate the information interchange into
the representation learning.

Inspired by the message-passing mechanism of GCN, for a
user (or micro-video) node in the bipartite graph Gm , we employ
an aggregation function f (·) to quantify the influence (i.e., the
representation being propagated) from its neighbors and output a
representation as follows:

hm = f (Nu ), (1)

where Nu = {j |(u, j) ∈ Gm } denotes the neighbors of user u, i.e.,
interacted micro-videos. We implement f (·) via:
• Mean Aggregation employs the average pooling operation
on the modal-specific features, and applies a nonlinear

1https://github.com/weiyinwei/MMGCN.
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Figure 2: Schematic illustration of our proposed MMGCN model. It constructs the user-microvideo bipartite graph for each
modality to capture the modal-specific user preference for the personalized recommendation of micro-video.

transformation, as follows:

favg(Nu ) = LeakyReLU
( 1
|Nu |

∑
j ∈Nu

W1,m jm
)
, (2)

where jm ∈ Rdm is the dm-dimension representation of micro-
video j in modality m; W1,m ∈ Rd

′
m×dm is the trainable

transformation matrix to distill useful knowledge, where d ′m
is the transformation size; and we select LeakyReLU(·) as
the nonlinear activation function [38, 41]. Such aggregation
method assumes that different neighbors would have the same
contributions to the representation of user u, namely, user u is
influenced equally by her neighbors.

• Max Aggregation leverages the max pooling operation to
perform dimension-aware feature selection, as follows:

fmax(Nu ) = LeakyReLU
(
max
j ∈Nu

W1,m jm
)
, (3)

where each dimension of hm is set as that of the corresponding
neighbor value with the maximum value. As such, different
neighbors have varying contributions to the output representations.
As such, the aggregation layer is capable of encoding the

structural information and distribution of neighbors into the
representation of the ego user; analogously, we can update
representations for item nodes.

2.3 Combination Layer
While containing the information being propagated from neighbors,
such representations forgo user u’s own feature and the interaction
among different modalities. However, existing GNN efforts (e.g.,
GCN [22], GraphSage [14], GAT [32]) only consider homogeneous
features from one data source. Hence, directly applying their
combination operations fails to capture the interactions between
different modalities.

In this section, we present a new combination layer, which
integrates the structural information hm , the intrinsic information
um , and the modality connection uid into a unified representation,

which is formulated as:

u(1)m = д(hm , um , uid ), (4)

where um ∈ Rdm is the representation of user u in modality m;
uid ∈ Rd is the d-dimension embedding of user ID, remaining
invariant and serving as the connection across modalities.

Inspired by prior work [3] on multi-modal representation, we
first apply the idea of the coordinated fashion, namely, separately
project um ,∀m ∈ M into the latent space that is the same as uid :

ûm = LeakyReLU(W2,mum ) + uid , (5)

where W2,m ∈ Rd×dm is the trainable weight matrix to transfer
um into the ID embedding space. As such, the representations
from different modalities are comparable in the same hyperplane;
meanwhile, the ID embedding uid essentially bridges the
gap between modal-specific representations, and propagates
information across modalities during the gradient back-propagation
process. In this work, we implement the combination function д(·)
via the following two methods:
• ConcatenationCombination concatenates two representations,
followed by a nonlinear transformation:

дco(hm , um , uid ) = LeakyReLU
(
W3,m (hm | |ûm )

)
, (6)

where | | is the concatenation operation, W3,m ∈ Rd
′
m×(d ′

m+d ) is
the trainable model parameters.

• Element-wiseCombination considers the element-wise feature
interaction between two representations:

дele(hm , um , uid ) = LeakyReLU
(
W3,mhm + ûm

)
, (7)

where W3,m ∈ Rd×d
′
m denotes a weight matrix to transfer

the current representations into the common space. As such,
the element-wise interactions between two features is taken
into consideration, while two representations are assumed to be
independent in Concatenation Combination.



Table 1: Statistics of the evaluation dataset. (V, A, and
T denote the dimensions of visual, acoustic, and textual
modalities, respectively.)

Dataset #Interactions #Items #Users Sparsity V A T
Tiktok 726,065 76,085 36,656 99.99% 128 128 128
Kwai 1,664,305 329,510 22,611 99.98% 2,048 - 128

MovieLens 1,239,508 5,986 55,485 99.63% 2,048 128 100

2.4 Model Prediction
By stacking more aggregation and combination layers, we explore
the higher-order connectivity inherent in the user-item graphs.
As such, we can gather the information propagated from the l-
hop neighbors in modalitym, mimicking the exploration process
of users. Formally, the representation from l-hop neighbors of
user u and the output of l-th multi-modal combination layer are
recursively formulated as:

h(l )m = f (Nu ) and u(l )m = д(h
(l )
m , u

(l−1)
m , uid ), (8)

where u(l−1)m is the representation generated from the previous
layer, memorizing the information from her (l − 1)-hop neighbors.
u(0)m is set as um at the initial iteration. Wherein, user u is
associated with trainable vectors um ,∀m ∈ M, which are randomly
initialized; whereas, item i is associated with pre-extracted features
im ,∀m ∈ M. As a result, u(l−1)m characterizes the user preferences
on item features in modality m, and considers the influence of
modality interactions that reflect the underlying relationships
between modalities.

After stacking L single-modal aggregation and multi-modal
combination layers, we obtain the final representations for user
u and micro-video i via the linear combination of multi-modal
representations, as:

u∗ =
∑

m∈M

u(L)m and i∗ =
∑

m∈M

i(L)m (9)

2.5 Optimization
To predict the interaction between the users and micro-videos,
we fuse their modal-specific representations of them and apply
Bayesian Personalized Ranking (BPR) [29], which is a well-known
pairwise ranking optimization framework, as the learning model.
In particular, we model a triplet of one user and two micro-videos,
in which one of the micro-videos is observed and the other one is
not, formally as,

R = {(u, i, i ′)|(u, i) ∈ G, (u, i ′) < G}, (10)

where N(u) consists of all micro-videos associated with u, and R

is a set of triples for training. Further, it is assumed that the user
prefers the observed micro-video rather than the unobserved one.
Then, the objective function can be formulated as,

L =
∑

(u,i,i′)∈R

− ln µ(u∗⊤i∗ − u∗⊤i
′∗) + λ ∥Θ∥22 , (11)

where µ(·) is the sigmoid function; λ and Θ represent the
regularization weight and the parameters of the model, respectively.

3 EXPERIMENTS
In this section, we conduct experiments on three public datasets,
aiming to answer the following research questions:
• RQ1: How does MMGCN perform compared with state-of-the-
art multi-modal recommendation systems and other GNN-based
methods on our task?

• RQ2: How do different designs (e.g., number of modalities,
number of layers, selection of combination layer) influence the
performance of MMGCN?

• RQ3: Can MMGCN capture the inconsistent preference of users
on different modalities?
In what follows, we first present the experimental settings (i.e.,

datasets, baselines, evaluation protocols, and parameter settings),
followed by answering the above three questions.

3.1 Experimental Settings
Datasets. To evaluate our model, we experimented with three
public datasets: Tiktok, Kwai, and MovieLens. The characteristics
of these datasets are summarized in Table 1.
• Tiktok2: The first dataset is published by Tiktok, which is a
micro-video sharing platform that allows users to create and
share micro-videos with duration of 3-15 seconds. It consists of
users, micro-videos and their interactions (e.g., click). The micro-
video features in each modality are extracted and published
without providing the raw data. Particularly, the textual features
are extracted from the micro-video captions given by users.

• Kwai3: As a popular micro-video service provider, Kwai has
constructed a large-scale micro-video dataset. Similar with
the Tiktok dataset, this contains the privacy-preserving user
information, content features of micro-videos, and interaction
data. However, the acoustic information of micro-videos is
missing.

• MovieLens4: This movie dataset has been widely used to
evaluate recommendations. To construct a dataset, we collected
the titles and descriptions of movies from the MoiveLens-
10M dataset and crawled the corresponding trailers instead of
the full-length videos from Youtube5. We use the pre-trained
ResNet50 [16] models to extract the visual features from key
frames extracted from micro-video. In terms of acoustic modality,
we separate audio tracks with FFmpeg6 and adopt VGGish [20]
to learn the acoustic deep learning features. For textual modality,
we use Sentence2Vector [1] to derive the textual features from
micro-videos’ descriptions.

Baselines. To evaluate the effectiveness of our model, we compare
MMGCN with the following state-of-the-art baselines, which can
be grouped into two categories: CF-based (VBPR and ACF) and
GCN-based (GCMC and GraphSAGE) methods.
• VBPR [17]. Such model integrates the content features and ID
embeddings of each item as its representation, and uses the
matrix factorization (MF) framework to reconstruct the historical
interactions between users and items. In the experiments, we use

2http://ai-lab-challenge.bytedance.com/tce/vc/.
3https://www.kuaishou.com/activity/uimc.
4https://grouplens.org/datasets/movielens/.
5https://www.youtube.com/.
6http://ffmpeg.org/.



Table 2: Performance comparison between our model and the baselines.

Model Kwai Tiktok MovieLens
Precision Recall NDCG Precision Recall NDCG Precision Recall NDCG

VBPR 0.2673 0.3386 0.1988 0.0972 0.4878 0.3136 0.1172 0.4724 0.2852
ACF 0.2559 0.3248 0.1874 0.8734 0.4429 0.2867 0.1078 0.4304 0.2589

GraphSAGE 0.2718 0.3412 0.2013 0.1028 0.4972 0.3210 0.1132 0.4532 0.2647
NGCF 0.2789 0.3463 0.2058 0.1065 0.5008 0.3226 0.1156 0.4626 0.2732

MMGCN 0.3057* 0.3996* 0.2298* 0.1164* 0.5520* 0.3423* 0.1250* 0.5186* 0.3085*
%Improv. 9.61% 15.59% 11.66% 9.03% 10.23% 6.11% 6.66% 9.78% 8.17%
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Figure 3: Performance in terms of Recall@K w.r.t. different modalities on the three datasets.

the concatenation of multi-modal features as content information
to predict the interactions between users and micro-videos.

• ACF [8]. This is the first framework that is designed to tackle the
implicit feedback in multimedia recommendation. It introduces
two attention modules to address the item-level and component-
level implicit feedbacks. To explore the modal-specific user
preference and micro-video characteristic, we treat each modality
as one component of the micro-video, which is consistent with
the idea of standard ACF.

• GraphSAGE [14]. Such model is a general inductive framework
that leverages node feature information to update node
representations for the previously unseen data. In particular,
it considers the structure information as well as the distribution
of node features in the neighborhood. For a fair comparison, we
integrate multi-modal features as the node features to learn the
representation of each node.

• NGCF [41]. This method represent a novel recommendation
framework to integrate the user-item interactions into the
embedding process. By exploiting the higher-order connectivity
from user-item interactions, the modal encodes the collaborative
filtering signal into the representation. For a fair comparison,
we regard the multi-modal features of micro-video as side
information and feed them into the framework to predict the
interactions between the users and items.

Evaluation Protocols and Parameter Settings. We randomly
split the dataset into training, validation, and testing sets with 8:1:1
ratio, and create the training triples based on random negative
sampling. For testing set, we pair each observed user-item pair
with 1000 unobserved micro-videos that the user has not interacted
before. We use the widely-used protocols [8, 19]: Precision@K ,
Recall@K , and NDCG@K to evaluate the performance of top-K

recommendation. Here we set K = 10 and report the average
scores in testing set. To train our proposed model, we randomly
initialize model parameters with a Gaussian distribution and
use the LeakyReLU as the activation function, and optimizing
the model with stochastic gradient descent (SGD). We search
the batch size in {128, 256, 512}, the latent feature dimension in
{32, 64, 128}, the learning rate in {0.0001, 0.0005, 0.001.0.005, 0.01}
and the regularizer in {0, 0.00001, 0.0001, 0.001, 0.01, 0.1}. As the
findings are consistent across the dimensions of latent vectors, if not
specified, we only show the result of 64, a relatively large number
that returns good accuracy.

3.2 Performances Comparison (RQ1)
The comparative results are summarized in Table 2. From this table,
we have the following observations:

• MMGCN substantially outperforms all other baselines in most
cases, verifying the effectiveness of our model. In particular,
MMGCN improves the strongest baselines w.r.t. Recall by 15.59%,
10.23%, and 9.78%, respectively. We attribute such significant
improvements to the learning of modal-specific representations,
so as to capture users’ preference effectively.

• Jointly analyzing the results w.r.t. Recall on different datasets,
we find that MMGCN has an advantage over the baselines on
the three datasets. It again demonstrates that MMGCN is able
to exploit the structural information to enrich the user and
micro-video representations, whichmight benefit from themodal-
specific user preference and micro-videos features modeling.

• The GNN-based model outperforms the CF-based model on
Kwai and Tiktok. The improvements are attributed to the graph
convolution layers. Such operations not only capture the local
structure information but learn the distribution of neighbors’



Table 3: Performance of MMGCN with different aggregation and combination layers.

Variant Kwai Tiktok MovieLens
Precision Recall NDCG Precision Recall NDCG Precision Recall NDCG

дco−id 0.2812 0.3689 0.2146 0.1056 0.5289 0.3143 0.1034 0.4632 0.2702
дco 0.2927 0.3841 0.2188 0.1132 0.5482 0.3372 0.1209 0.5090 0.3001

дele−id 0.2840 0.3729 0.2172 0.1071 0.5312 0.3186 0.1064 0.4704 0.2743
дele 0.3057 0.3996 0.2298 0.1164 0.5520 0.3423 0.1250 0.5186 0.3085

Table 4: Performance of MMGCN w.r.t. the number of layers.

Layer Kwai Tiktok MovieLens
Precision Recall NDCG Precision Recall NDCG Precision Recall NDCG

One 0.2814 0.3728 0.2123 0.1084 0.5371 0.3263 0.1174 0.5017 0.2950
Two 0.3057 0.3996 0.2298 0.1164 0.5520 0.3423 0.1250 0.5186 0.3085
Three 0.2983 0.3910 0.2216 0.1103 0.5431 0.3361 0.1181 0.5032 0.2957

features for each ego node, boosting the expressiveness of
representations.

• Generally speaking, NGCF achieves better performance than
other baselines over three datasets in most cases. It is reasonable
since NGCF are easily generalized to leverage the content
information to characterize the users and micro-videos.

• Unexpectedly, ACF performs poor on all datasets. The reason
of this may be due to the modification that we did during
the implementation of the ACF model, in which we replaced
the component-level features modeling by the modal-specific
information for a fair comparison.

3.3 Study of MMGCN (RQ2)
3.3.1 Effect of Modalities. To explore the effect of different
modalities, we compare the results on different modalities over
the three datasets, as shown in Figure 3. It shows the performance
of top-K recommendation lists where K ranges from 1 to 10. From
Figure 3, we have the following observations:

• As expected, the method with multi-modal features outperforms
those with single-modal features in MMGCN on three datasets.
It demonstrates that representing users with multi-modal
information achieves higher accuracy. It further demonstrates
that user representations are closely related to the content of
items. Moreover, it shows that our model could capture the user’s
modal-specific preference from content information.

• The visual modality is the most effective one among three
modalities. It makes sense since, when a user chooses what to
play, one usually pays more attention to the visual information
than other modality information.

• The acoustic modality provides more important information
for recommendation, compared with the textual features. In
particular, for Tiktok dataset, the acoustic information even has
comparable expressiveness to the visual modality.

• Textual modality is the least descriptive for interaction prediction,
particularly on Kwai and Tiktok datasets. This is reasonable since
we find the texts are of low quality, that is, the descriptions are
noisy, incomplete, and even irrelevant to the micro-video content
on these two datasets. However, this modality offers important
cues on MovieLens dataset. Because the textual description is the
storyline of the video, which highly relates to the content, and

some users may play the video according to the storyline. This
phenomenon consists with our argument that the user preference
are closely related to the content information.

• AsK increases, Recall@K of MMGCN is consistently higher than
the variants. It shows that user preference representations based
on each modality are closer to the real preferences of users, which
contribute to the prediction of user-item interactions. Modeling
with user preferences on variety modalities can lead to quality
multi-modal personalized recommendation.

3.3.2 Effect of Combination Layers. In our model, we design a
novel combination layer to integrate the local structure information
with the node’s features, facilitating the multiple modal-specific
representation fusion. Wherein, the combination function can be
implemented with two different way (cf. Equations (6) and (7)).
Here we compare these different implementations and evaluate
the effectiveness of the proposed combination layer, in which
дco−id and дele−id represent two type of implements without id
embedding, respectively. As illustrated in Table 3, we have the
following findings:
• In terms the three metrics, the дele one achieves the best
performance on the three datasets. This may due to that the
combination layer retains themodal-specific features to represent
the users and micro-videos. It demonstrate the effectiveness of
our combination layers.

• Comparing these methods, we found that the methods with
id embedding significantly outperforms the others. This
demonstrates the effectiveness of our novel combination layers.
Besides, we suggest that the shared id embedding connects
the different modalities by propagating the shared information
during the backpropagation.

• Comparing the two implementations, we observed that the
element-wise one is better than the concatenate one. We
conjecture that the concatenate one with fully connected layer is
more difficult to train, especially on the spare datasets, like Kwai.

3.3.3 Effect of Model Depth. To evaluate the effectiveness of
layers stack, we conduct experiments on the three different layers,
as shown in Table 4. From the results, we observed that:
• In terms three metrics, the two-layer model achieves better
results, which shows the increasing of layers does not lead
to better results. This demonstrates that the discrimination of
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Figure 4: Visualization of users’ played micro-videos distribution in different modalities, where each color indicates a user.

node is decreasing as the layers increasing. We suggest that the
increasing layers makes the neighbors of nodes more similar, and
further makes node representations more similar.

• Compared the one-layer model with the two-layer model, the
improvement of the results on Tiktok and Kwai are more obvious,
while the results on MovieLens are not significantly improved.
It demonstrates that integrating the local structure information
can enhance the node representation.

• Compared the two-layer model with the three-layer model, the
later model achieved worse results than the former one. This
may be caused by overfitting due to the sparse data.

• Compared the single layer model with the three-layer model, we
observed that the results of single layer model are slightly inferior
to those of the three-layer model. We suppose the insufficient
local structure information of the single layer model results in
the low quality node representation. This again demonstrates the
effectiveness of content information in the node representations.

3.4 Case Study (RQ3)
We conducted experiments to visualize our modal-specific
representations. In particular, we randomly sampled 5 users
and collected the micro-videos they have played. To verify our
assumption that the user preferences on different modalities
are inconsistent, we visualized these representations using t-
Distributed Stochastic Neighbor Embedding (t-SNE) in 2-dimension,
as illustrated in Figure 4.

The coordinate graphs from left to right represent visual and
textual modality, respectively. The points in the graphs represent
the videos that the users have played, and their colorsmean different
users. Because the acoustic modality is hard to be visualized, we
only analyze the results on visual and textual modalities.
• In visual modality, the points of user1 are dispersive and some
of them mix with the points of user2, user3, and user4. The
points form two concentrated regions in textual modality, and
they are far apart from each other. The distribution of the
points means he/she has two distinct preferred themes in
textual modality, and they are quite different. While he/she
has no particular preference on visual modality. The points of
user2 centralized in three regions in visual modality. While in
textual modality, they are diffuse and mix with other points

of users. The distribution pattern of user2 shows his/her three
preferred themes in visual modality. The points of user3 are
obviously centralized distribution in the two modalities, which
illustrates he/she has particular preference in each modality. The
distribution of the points of user4 and user5 are scattered and
mix with other points of users.

• It is still abstract to use the distribution of points to analyze. The
multi-modal information of videos represented by each point is
displayed on the graph for further explanation. Take the example
of user1 and user2, the visual and textual modality of some of their
preferred videos are displayed in Figure 4, which represented
by videos posters and storylines. We observed that the videos
played by user1 have no obvious features visually, because the
posters he/she preferred cover different varieties. However, the
storylines of these videos are just including two themes: war
and romance. From user2 we observed that his/her preference on
visual modality are clearly divided into animation and classicism,
while he/she has no distinct preference on storylines. These
phenomenons demonstrate our assumption that the users have
different preference in different modalities.

4 RELATEDWORK
In this section, we introduce some works that are related to our
researches, including multi-modal personalized recommendation,
multi-modal fusion and graph convolution network.

4.1 Multi-modal Personalized
Recommendation

Due to the success of CF method in recommendation systems,
early multi-modal recommendation algorithms mainly based
on CF models [6, 18, 38–40]. CF-based models leverage users’
feedbacks (e.g. implicit feedback and explicit feedback) to predict the
interactions between users and items. Although these approaches
work well for the items with sufficient feedbacks, they are less
applicable to the ones with few feedbacks, which cause the low-
quality recommendations. Therefore, these CF-based methods are
limited by the sparsity of the data.

To remedy the disadvantage of CF-based model, researchers
have developed hybrid approaches which incorporate the items’
content information and the collaborative filtering effects for



recommendation system. For instance, Chen et al. [7] constructed a
user-video-query tripartite graph and performed graph propagation
to combine the content information and the feedback information
between users and videos. Recently, Chen et al. [8] explored
the fine-grained user preference on the item and introduced a
novel attention mechanism to address the challenging item- and
component-level feedback in multimedia recommendation. In this
method, the user is characterized by both collaborative filtering
effect and the attended items’ content information. Although this
method has learned the two levels of the user preference, it fails
to model the user preferences on different modalities, which is the
key in the multi-modal recommendation as mentioned in Section 1.
To fill up the blank in modal-specific features representation, our
model constructs the graph in each modality and represents the
model-specific features using GCN techniques, which integrates the
local structure information and content information distribution of
neighborhood.

4.2 Multi-modal Representation
The multi-modal representation is a representation of data using
the information in multiple modalities, which is one of the most
important problem in multi-modal applications. However, few
works focus on the multi-modal representation in the area of multi-
modal personalized recommendations.

Existing multi-modal representations can be grouped into two
categories: joint representations and coordinated representations.
Joint representations usually combine the single-modal information
and project into the same representation space. The simplest
implementation of the joint representation is the concatenation
of single-modal features. Recently, with its success in computer
vision [2, 15, 23] and natural language processing [9, 31], neural
networks are increasingly used in the multi-modal domain,
especially themulti-modal representations [10, 11, 34–37, 43]. Using
the neural networks, the function fusing the different modalities
information into a joint representation can be learned. Besides,
the probabilistic graphical models [4, 13] are another way to
construct a joint representation for multi-modal information using
the latent random variable. Although these methods learn a joint
representation to model the multi-modal data, they are suited for
situations when all of the modalities are present during inference,
which is hardly guaranteed in social platforms.

Different from the joint representations, the coordinated ones
learn separate representations for each modality but coordinate
them with constraints. To represent the multi-modal information,
From et al. [12] proposed a deep visual-semantic embedding model
which projects the visual information and semantic information
into a common space constrained by distance between the visual
embedding and corresponding word embedding. Similarly, Wang
et al. [33] constructed a coordinated space which enforces images
with similar meanings be closer to each other. However, since the
modal-specific information is the factor causing the difference in
each modality signals, the model-specific features are inevitably
discarded via those similar constrains.

Differently, in our model, we introduced a novel representation,
which respectively models the common part and specific part of
features, to resolve the abovementioned problem.

4.3 Graph Convolution Network
Asmentioned above, our proposed model uses the GCNs techniques
to represent the users and micro-videos, which is widespread
in recommendation systems [21, 22, 26, 28]. Towards the video
recommendation, Hamilton et al. [14] proposed a general inductive
framework which leverages the content information to generate
node representation for unseen data. Based on this method, Ying et
al. [42] developed and deployed a large-scale deep recommendation
engine at Pinterest for image recommendation. In this model, the
graph convolutions and random walks are combined to generate
the representations of nodes. Currently, Berg et al. [5] treated the
recommender systems as the view of link prediction on graphs
and proposed a graph auto-encoder framework based on message
passing on the bipartite interaction graph. Moreover, the side
information can be integrated into the node representation via
a separate processing channel. However, as can be seen, these
methods fail to capture the modal-specific representation for each
node in the multi-modal recommendation, which is the major
concern of our work.

5 CONCLUSION AND FUTUREWORK
In this paper, we explicitly model modal-specific user preferences
to enhance micro-video recommendation. We devised a novel
GCN-based framework, termed MMGCN, to leverage information
interchange between users and micro-videos in multiple modalities,
refine their modal-specific representations, and further model users’
fine-grained preferences on micro-videos. Experimental results on
three public public micro-video datasets well validated our model.
In addition, we visualized some samples to illustrate the modal-
specific user preferences.

This work investigates how the information exchange in
different modalities influences user preference, which is an initial
attempt to encode modality-aware structural information into
representation learning. It would be a promising solution to
understand user behaviors and provide more accurate, diverse, and
explainable recommendation. In future, wewill extend ourMMGCN
in several directions. First, we would construct multi-modal
knowledge graph to present objects and relations between them in
micro-videos [30], and then involve it into MMGCN to model finer-
grained content analysis, explore user interests in a reasonable
manner, and offer an in-depth understanding of user intents. It
can provide more accurate, diverse, explainable recommendation.
Second, we would explore how social leaders influence the
recommendation, that is, integrating social network with user-
item graphs. We also would like to incorporate multimedia
recommendation into dialogue systems towards more intelligent
conversational recommendations.
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