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ABSTRACT

Image-text retrieval is a fundamental and crucial branch in informa-

tion retrieval. Although much progress has been made in bridging

vision and language, it remains challenging because of the dif-

ficult intra-modal reasoning and cross-modal alignment. Existing

modality interaction methods have achieved impressive results on

public datasets. However, they heavily rely on expert experience

and empirical feedback towards the design of interaction patterns,

therefore, lacking flexibility. To address these issues, we develop a

novel modality interaction modeling network based upon the rout-

ing mechanism, which is the first unified and dynamic multimodal

interaction framework towards image-text retrieval. In particular,

we first design four types of cells as basic units to explore different

levels of modality interactions, and then connect them in a dense

strategy to construct a routing space. To endow the model with the

capability of path decision, we integrate a dynamic router in each

cell for pattern exploration. As the routers are conditioned on in-

puts, our model can dynamically learn different activated paths for

different data. Extensive experiments on two benchmark datasets,

i.e., Flickr30K and MS-COCO, verify the superiority of our model

compared with several state-of-the-art baselines.

CCS CONCEPTS

• Information systems→ Novelty in information retrieval;
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A kid in a red and black coat is 
laying on his back in the snow with 
his arm in the air and a red sled is 
next to him.
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Figure 1: Illustration of two main challenges in image-text

retrieval, i.e., intra-modal reasoning and cross-modal align-

ment. The aligned visual regions and textual entities are

highlighted in the same color, and the matched relations are

marked with the same number.

1 INTRODUCTION

Visual media and natural language are the two most prevalent

modalities exhibiting information in our daily life. It is essential for

computers to understand, match, and transform such cross-modal

data. Image-text retrieval, a fundamental and crucial problem in

information retrieval, has attracted extensive attention in recent

years [2, 8, 26]. It benefits a variety of applications, ranging from

cross-modal retrieval [11, 12, 23, 41] tomultimedia recommendation

[36]. However, it is still a challenging task due to the requirement

of the accurate reasoning of intra-modal relations and the precise

alignment of cross-modal information. Specifically, the former re-

quires recognizing and comprehending various relations within the

visual or textual modality, such as the intermediate relation “a red

sled is next to him” in the textual modality and the visual relation

outlined in the dotted circle, as illustrated in Figure 1. The latter

links items from different modalities to match with each other at

different semantic levels. For instance, as shown in Figure 1, the

visual region and the textual concept annotated with the same color,

and the high-level relations marked with the same number should

be well aligned.

Great efforts have been dedicated to tackling the above chal-

lenges via modeling various modality interactions over the past few

years. According to used interaction patterns, they can be roughly

divided into three categories: 1) Intra-modal Interaction. To-

wards the challenge of intra-modal reasoning, this pattern merely

carries out interaction modeling independently for different modali-

ties to explore relations among entities within the specific modality,

as illustrated in Figure 2(a). Particularly, existing related work com-

monly utilizes graph convolutional network [16] or self-attention

mechanism [26, 37] as intra-model interaction modules to derive

comprehensive single-modal representations. 2) Cross-modal In-

teraction. Studies in this category focus on aligning cross-modal
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Figure 2: Illustration of existing modality interaction patterns. The red and the blue boxes represent the intra-modal interaction

and the cross-modal interaction module, respectively.

entities, for example, aligning the visual region related to the “kid”

and the word “kid” in Figure 1. This is accomplished by different

cross-modal interaction operations, as shown in Figure 2(b). For

example, the stacked cross-attention network [15] and an adaptive

message passing method [33] are designed to capture cross-modal

pairwise interactions. Moreover, to further delve into high-order

correspondences, Chen et al. [3] proposed an iterative framework

by stacking multiple cross-modal interaction modules in depth. And

3) Hybrid-modal Interaction. To further tackle the two afore-

mentioned challenges, recent methods combining intra- and inter-

modal interactions are developed, such as the serial pattern [22]

and the parallel pattern [35, 40] displayed in Figure 2(c). Despite the

significance and value of the methods in the above three categories,

they still suffer from two critical shortcomings: 1) Their modality

interaction patterns are hand-crafted, depending heavily on expert

knowledge and empirical feedback, which may make some optimal

interaction patterns still untapped. And 2) existing models are static,

namely, all samples go through the same fixed computation flow. This

may induce that even simple image-text pairs would be processed by

some very complex interaction patterns.

To tackle these downsides, we present a novelDynamIcModality

intEraction modeling network (DIME), which is the first unified

image-text retrieval framework with dynamic modality interaction

pattern learning. As shown in Figure 3, we first tailor four types of

cells to accomplish different interaction operations. Concretely, the

rectified identity cell offers identical and non-linear transformation

abilities, and the intra-modal reasoning cell is designed to capture

context information and intra-modal relations. To enhance the

visual-textual alignment, the global-local guidance cell and cross-

modal refinement cell are designed with different granularities.

Afterwards, we stack these cells in width and depth to construct a

complete path space, such that a variety of unexplored interaction

patterns can be considered. Meanwhile, we configure a dynamic

router for each cell to generate data-dependent paths. Moreover,

to drive similar images/texts to learn similar paths, we introduce a

semantic consistency regularization. Extensive experimental results

on two benchmark datasets, i.e., Flickr30K [39] and MS-COCO [19],

validate the effectiveness and superiority of our proposed method1.

The main contributions of this work are three-fold:

• We present a dynamic modality interaction modeling frame-

work towards image-text retrieval, which could cover ex-

isting interaction patterns and automatically learn other

unexplored ones. To the best of our knowledge, it is the first

work to dynamically explore different modality interaction

patterns for varied data.

1Our codes and settings have been released at https:// sigir21.wixsite.com/dime, to
facilitate the future research.

• We design four basic cells to model modality interactions

with different granularities, settling both the intra-modal

reasoning and the inter-modal alignment matters.

• To dynamically learn interaction patterns, we integrate a soft

router in each cell. Furthermore, to constrain these dynamic

routers for powerful path decision, we introduce a semantic

consistency regularization term.

2 RELATEDWORK

2.1 Image-Text Retrieval

According to the granularity of semantic alignment, we roughly

divide existing studies into two groups: global embedding based and

local inference based methods. The former accomplishes semantic

matching via mapping holistic images and sentences into a common

modality agnostic embedding space, in which the visual-textual

similarity is calculated [6, 7, 24, 42]. To be specific, DeViSE [7], the

pioneering work of this line, adopts CNN and Skip-Gram [24] to

map images and texts into a joint space for semantic alignment.

Furthermore, to take full advantage of informative pairs, Faghri

et al. [6] integrated the hard negative mining technology into the

ranking loss, contributing to a significant improvement. Recently,

Zheng et al. [42] proposed to discriminatively embed images and

texts into a shared semantic space with an instance loss. Although

these methods have achieved promising performance, they fail to

explore fine-grained relations among visual regions and words.

The latter branch targets at cross-modal semantic alignments via

exploiting fine-grained modality interactions [3, 4, 14–16, 22, 26, 34,

35, 40]. Particularly, Karpathy et al. [14] first detected visual regions

with R-CNN, and then aggregated similarities between fragments

for image-text matching. Inspired by the success of bottom-up atten-

tion [1], Lee et al. [15] proposed a stacked cross attention model for

similarity prediction by considering the dense pairwise cross-modal

interaction. To enhance the comprehensive understanding towards

images and texts, some intra-modal interaction based methods have

been proposed. For instance, Li et al. [16] performed local and global

reasoning by building up connections between image regions, and

Chen et al. [4] processed images and sentences symmetrically by

reordering image objects according to the corresponding descrip-

tion. Qu et al. [26] designed a gating self-attention mechanism

for context modeling and a multi-view summarization module for

asymmetry matching. Thereafter, plentiful intra- and inter-modal

interaction patterns have been explored and applied to the image-

text retrieval task. To be more specific, Chen et al. [3] introduced

an iterative matching model using cross-modal interaction with

multiple steps. In contrast, Wei et al. [35] and Zhang et al. [40]

exploited intra-modal and inter-modal correlations by designing
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a parallel modality interaction framework. Liu et al. [22] serially

performed inter- and intra-modal interaction for node-level and

structure-level matching in a graph structured model.

Although significant progress has been made by considering

different fine-grained interaction patterns, they are essentially hand-

crafted, heavily depending on expert experience. In addition, they

overlook the difference in comprehension between data samples. To

this end, designing a flexible and adaptable framework, which could

provide a broad space of interaction patterns and automatically

learn execution paths, becomes a critical challenge.

2.2 Dynamic Network

Different from neural architecture search [20] with static inference,

dynamic networks [17, 18, 28, 38] generate execution paths on

the fly conditioned on input samples. In particular, early dynamic

methods aim at network compression by channel pruning [18] or

layer skipping [31, 38]. For example, Wu et al. [38] designed a pol-

icy network to determine whether skip or execute convolutional

blocks under a reinforcement learning setting. Recently, based on

the dynamic mechanism, some researchers devote to tackling the

intrinsic challenge of scale variation in the computer vision com-

munity. To be specific, Li et al. [17] proposed a dynamic routing

network with soft conditional gate to search data-dependent scale

transformation paths for semantic segmentation. Song et al. [28]

designed a dynamic head with efficient fine-grained representation

capability for object detection.

To the best of our knowledge, the dynamic mechanism has never

been studied in the field of image-text retrieval. Different with

current related work, our model is the first one to introduce the

dynamicmechanism to learnmodality interaction patterns for cross-

modal semantic alignment.

3 METHODOLOGY

In this section, we elaborate each component of our model, as

illustrated in Figure 3. Concretely, we first introduce the feature

extraction process in Section 3.1 and four types of interaction cells

in Section 3.2. Afterwards, we connect these cells to construct the

routing space and present soft routers to perform routing process

in Section 3.3. We ultimately detail the objective function utilized

to optimize the network for image-text retrieval in Section 3.4.

3.1 Feature Representation

3.1.1 Visual Representation. Given an image 𝐼 , we first extract re-
gion features with the bottom-up attention model2 [27], and then

select top-R ROIs according to the class confidence scores. The aver-

age pooling is applied to the feature maps of these regions to obtain

their feature vectors, represented as F = [f1; . . . ; f𝑅] ∈ R𝑅×𝐷𝑣 ,

where 𝐷𝑣 is the dimension of the extracted region features. After-

wards, we transform these feature vectors into a 𝐷-dimensional

space via a fully-connected (FC) linear projection. The output vi-

sual region representation is denoted as V = [v1; . . . ; v𝑅] ∈ R
𝑅×𝐷 .

Meanwhile, we acquire the global representation v̄ ∈ R𝐷 of the

given image 𝐼 by adopting the average-pooling.

2It is implemented by the Faster R-CNN [27] with ResNet-101 [10] as the backbone.

3.1.2 Textual Representation. For a given sentence 𝑇 , we first uti-
lize pre-trained BERT [5] as the textual encoder to extract word

embeddings E = [e1; . . . ; e𝐾 ] ∈ R
𝐾×𝐷𝑡 , where 𝐾 denotes the num-

ber of words and 𝐷𝑡 represents the dimension of word embed-

dings. We then adopt a bag of parallel 1-D convolution kernels

with different sizes to capture phrase-level semantics. Afterwards,

we concatenate the feature maps of these kernels, and then pass

the result into a FC layer to obtain 𝐷-dimensional word features,

denoted asW = [w1; . . . ;w𝐾 ] ∈ R
𝐾×𝐷 . In this work, we adopt the

max-pooling to obtain the global sentence feature w̄ ∈ R𝐷 .

3.2 Modality Interaction Cells

To address the intra-modal reasoning and cross-modal alignment

challenges, we tailor four3 types of cells including the Intra-Modal

Reasoning Cell (IMRC) for intra-modal reasoning challenge, the

Global-Local Guidance Cell (GLGC) and the Cross-Modal Refine-

ment Cell (CMRC) for cross-modal alignment challenge, and the

Rectified Identity Cell (RIC) for discriminative clue retention, as

shown in Figure 3. These cells are able to characterize modality

interactions of different levels, endowing our model with excellent

semantic representation and reasoning capability. Operations in

these cells can be formally summarized as,

O
(𝑙)
𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F

(𝑙)
𝑖 (X

(𝑙)
𝑖 ), 𝑖 = 0 𝑜𝑟 1,

F
(𝑙)
𝑖 (X

(𝑙)
𝑖 , ȳ), 𝑖 = 2,

F
(𝑙)
𝑖 (X

(𝑙)
𝑖 ,Y), 𝑖 = 3,

(1)

where F
(𝑙)
𝑖 represents the interaction function of the 𝑖-th cell in

the 𝑙-th layer, X
(𝑙)
𝑖 denotes the input of the 𝑖-th cell in the 𝑙-th layer

(introduced in Section 3.3.2) and O
(𝑙)
𝑖 ∈ R𝑀×𝐷 denotes the corre-

sponding output feature matrix. Each row of O
(𝑙)
𝑖 represents the

𝐷-dimensional feature vector of a fragment. Due to the bidirectional

nature of cross-modal retrieval, we separately utilize X ∈ R𝑀×𝐷

and x̄ ∈ R𝐷 to denote the local and global features of the query,

respectively. Likewise, the local and global features of the gallery

are represented as Y ∈ R𝑁×𝐷 and ȳ ∈ R𝐷 , respectively.

In this work, we implement two single symmetrical versions

of model. We hence set X := V (𝑀 := 𝑅) and Y := W (𝑁 := 𝐾)
for the image-text (i-t) version, and X := W (𝑀 := 𝐾) and Y := V

(𝑁 := 𝑅) for the text-image (t-i) version. Note that the same type

cells in different layers (e.g., F
(𝑙−1)
𝑖 and F

(𝑙)
𝑖 ) perform the same

operation without sharing parameters. In what follows, we will

omit the superscript layer index (𝑙) for simplicity.

3.2.1 Rectified Identity Cell. Human can make sense of a simple

image (or a short sentence) at a glance. We hence argue that compli-

cated interaction operations may not always be essential, especially

for simple images or sentences. Motivated by this, we intend to

design a simple interaction cell that could skip unnecessary op-

erations and retain discriminating clues. Besides, to alleviate the

gradient vanishing problem, we present the rectified identity cell,

formulated as F0 (X) = ReLU(X).

3In fact, we can also customize different numbers of cells according to diverse require-
ments of performance-efficiency trade-off.
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3.2.2 Intra-Modal Reasoning Cell. To capture semantic dependen-

cies between local fragments (i.e., words or visual regions), an intra-

modal reasoning cell is designed. Concretely, we adopt the multi-

head self-attention mechanism [30] to capture the intra-modal

dependencies from different subspaces as,

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (X) = 𝐶𝑜𝑛𝑐𝑎𝑡 (h1, ...,h𝐻 ) + X, (2)

where 𝐶𝑜𝑛𝑐𝑎𝑡 (·) represents the concatenation operation across

the feature dimension, 𝐻 denotes the number of heads, and h𝑖 =
𝐴𝑡𝑡 (XW

𝑄
𝑖 ,XW

𝐾
𝑖 ,XW

V
𝑖 ). In this work, 𝐴𝑡𝑡 refers to the scaled-dot

product attention formulated as follows,

𝐴𝑡𝑡 (Q,K,V) = Softmax(
QK�√
𝑑𝑘

)V, (3)

where Softmax is operated on each row and 𝑑𝑘 is the channel num-

ber of Q and K. Thereafter, a fully connected feed-forward network

is executed to combine attention results from different heads.

Based on the above processes, we summarize our intra-modal

reasoning cell as,

F1 (X) = 𝐹𝐹𝑁 (𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (X)), (4)

where 𝐹𝐹𝑁 denotes the feed forward network implemented by a

two-layer multi-layer perceptron (𝑀𝐿𝑃 ) with the ReLU activation

function in between.

3.2.3 Global-Local Guidance Cell. Although local representations

can encode abundant clues, global features condense contextual

information and high-level semantics. Inspired by this, we adopt

the global information of one modality as guidance to regulate the

local fragment of another modality, which is formulated as,{
d𝑟 = 𝐹𝐶 (x𝑟 ) � ȳ,

x′𝑟 = (1 + 𝑁𝑜𝑟𝑚(d𝑟 )) � x𝑟 ,
(5)

where d𝑟 represents the guidance direction for the 𝑟 -th local frag-

ment, and 𝑁𝑜𝑟𝑚(·) denotes L2-normalization across fragment di-

mension. The above global-local guidance process is hence summa-

rized as F2 (X, ȳ) = [x′1; ...;x
′
𝑀 ] .

3.2.4 Cross-Modal Refinement Cell. To further bridge the seman-

tic gap and enrich representations, we refine fragment features by

exploring local-local cross-modal interactions. Specially, we first

calculate attention weights between fragments of divergent modal-

ities as follows,

𝛼𝑟𝑘 =
exp(𝜆𝑠𝑟𝑘 )∑𝑁
𝑘=1 exp(𝜆𝑠𝑟𝑘 )

, (6)

where 𝜆 is the inversed temperature factor and 𝑠𝑟𝑘 = cos(x𝑟 , y𝑘 ).

We can then obtain the context vector c𝑟 =
∑𝑁
𝑘=1 𝛼𝑟𝑘y𝑘 .

Based on the cross-modal context information, we propose a

conditional modulation strategy for refinement, in which the local

features x𝑟 can be enhanced semantically. To be more specific, the

context vector c𝑟 is first mapped to generate the scaling vector 𝛾𝑟
and the shifting vector 𝛽𝑟 as follows,{

𝛾𝑟 = Tanh(𝐹𝐶𝛾 (c𝑟 )),

𝛽𝑟 = 𝐹𝐶𝛽 (c𝑟 ) .
(7)

Afterwards, the refined local feature x̃𝑟 is calculated by affine trans-

formation followed by a 𝑀𝐿𝑃 and shortcut connection, which is

formulated as,

x̃𝑟 = 𝑀𝐿𝑃 (x𝑟 � 𝛾𝑟 + 𝛽𝑟 ) + x𝑟 . (8)

Combining the above steps, our cross-modal refinement cell is

represented as F3 (X,Y) = [x̃1; ...; x̃𝑀 ] .

3.3 Soft Router

3.3.1 Routing Space. As shown in Figure 3, to give full play to the

respective advantages of four cells, they are configured in parallel

per layer. Besides, we connect them between the adjacent layers in

a dense way. Based on this, each cell has the chance to receive all

signals from the cells belonging to the last layer. More importantly,

this dense connection scheme ensures the abundance and flexibility

of the routing space, where many potential interaction patterns can

be explored, including the ones shown in Figure 2.
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3.3.2 Routing Process. After constructing the densely connected

routing space, the routing process is conducted by our proposed

soft router, which can be viewed as a procedure of path decision.

Formally, the input of the i-th cell in the l-th layer is obtained by

the following aggregation operation,

X
(𝑙)
𝑖 =

{
X, 𝑙 = 0,∑𝐶−1

𝑗=0 𝑔
(𝑙−1)
𝑗,𝑖 O

(𝑙−1)
𝑗 , 𝑙 > 0,

(9)

where X ∈ R𝑀×𝐷 denotes the features of local fragments (e.g., V

or W), 𝐶 indicates the total number of cells in each layer4, and

O
(𝑙−1)
𝑗 ∈ R𝑀×𝐷 represents the output of 𝑗-th cell in the (𝑙 − 1)-th

layer (refer to Eqn. (1)). In this work, 𝑔
(𝑙−1)
𝑗,𝑖 ∈ [0, 1] denotes the

path probability from the 𝑗-th cell in the (𝑙 − 1)-th layer to the 𝑖-th

cell in the 𝑙-th layer. It is calculated as g
(𝑙)
𝑖 = G

(𝑙)
𝑖 (X

(𝑙)
𝑖 ) ∈ R𝐶 ,

where G
(𝑙)
𝑖 (·) denotes the routing function of the 𝑖-th cell in the

𝑙-th layer. More concretely, this function is implemented by average

pooling followed by a𝑀𝐿𝑃 and two activation functions as,

G
(𝑙)
𝑖 (X

(𝑙)
𝑖 ) = ReLU{Tanh[𝑀𝐿𝑃 (

1

𝑀

𝑀∑
𝑟=1

x
(𝑙)
𝑖,𝑟 )]}, (10)

where x
(𝑙)
𝑖,𝑟 is the 𝑟 -th row vector of X

(𝑙)
𝑖 . Different from the hard

gate used in [18, 38], we consider a soft version via generating

continuous values as path probabilities, making direct gradient

propagation available.

When the routing process ends, we can derive the final refined

feature matrix X∗ = X
(𝐿)
0 through Eqn. (9) from the last layer,

which only has one cell. We ultimately aggregate these local embed-

deings (i.e., the row vectors of X∗) by pooling operation5 to obtain

the refined global representation x∗. It will be used for similarity

calculation with the global representation of another modality ȳ.

3.4 Objective Function

3.4.1 Alignment Objective. To achieve semantic alignment of a

given positive image-text pair (𝐼 ,𝑇 ), we utilize the hinge-based

bidirectional triplet loss for optimization, which is defined as,

𝐿𝐴 = [𝛼 − 𝑠 (𝐼 ,𝑇 ) + 𝑠 (𝐼 ,𝑇 )]+ + [𝛼 − 𝑠 (𝐼 ,𝑇 ) + 𝑠 (𝐼 ,𝑇 )]+, (11)

where 𝛼 represents a margin factor, [𝑥]+ = max(𝑥, 0), and 𝑠 (𝐼 ,𝑇 )
denotes the cosine similarity between the global representations of

𝐼 and 𝑇 . Specially, 𝑠 (𝐼 ,𝑇 ) = cos(v∗, w̄) for the model of i-t version,

and 𝑠 (𝐼 ,𝑇 ) = cos(v̄,w∗) for the t-i version. 𝑇 = argmax𝑗≠𝑇 𝑠 (𝐼 , 𝑗)

and 𝐼 = argmax𝑖≠𝐼 𝑠 (𝑖,𝑇 ) are the hardest negatives in a mini-batch.

3.4.2 Path Regularization. Besides the complexity of input samples

considered in Section 3.2.1, high-level semantics may also affect the

learning of interaction patterns. In general, samples with similar

semantics should learn similar routing paths. In other words, the

routing distribution is expected to be consistent with the semantic

distribution. To this end, we introduce a path regularization term

by considering semantic similarities between samples.

Considering that the original BERT embeddings incorporate

abundant semantic information, we leverage them to guide the

4Since we have designed four types of cells,𝐶 = 4 in this paper.
5In our work, the final refined global representation is obtained by adding the average
pooling result and the max pooling result.

routing learning. In particular, given an instance 𝑥 (𝑥 is an image if

we optimize the model of i-t version, otherwise it is a sentence.), we

first extract word embeddingsE𝑥 by BERT6, and then adopt average-

pooling to obtain the semantic representation ē𝑥 of 𝑥 . Afterwards,
we collect and concatenate the gate values from all routers, obtain-

ing the path vector7 g𝑥 ∈ R𝐶
2 (𝐿−1)+𝐶 . To achieve semantic-path

consistency, we formulate the regularization as,

𝐿𝑃 =
∑
𝑦∈B

[cos(g𝑥 , g𝑦) − cos(ē𝑥 , ē𝑦)]
2, (12)

where B is a collection of instances with the same modality as 𝑥 .
Finally, we combine the above triplet loss and the path regular-

ization term to obtain the total objective function as,

𝐿 = 𝐿𝐴 + 𝜆𝑃𝐿𝑃 , (13)

where 𝜆𝑃 serves as the balance factor.

4 EXPERIMENTS

To justify the effectiveness of our DIME model, we carried out

experiments under the bidirectional retrieval scenario involving

1) Image-to-Text (I2T) retrieval, i.e., retrieving sentences that can

well depict the content of a given image; and 2) Text-to-Image (T2I)

retrieval, i.e., retrieving images that are semantically consistent

with a given text query.

4.1 Datasets

In this paper, we conducted experiments on the two widely-used

benchmark datasets: Flickr30K and MS-COCO, to evaluate our pro-

posed model and several state-of-the-art baselines.

Flickr30K [39]. This dataset consists of 31,783 images, where

each image is described by 5 different sentences. Following the

settings in previous work [4, 15, 26], this dataset is split into 29,783

training images, 1,000 validation images, and 1,000 testing images.

MS-COCO [19]. It is a large-scale dataset including 123,287

images, where each image is associated with 5 annotated sentences.

Similarly, we followed the split of [4, 15, 26], i.e., 113,287 images for

training, 5,000 images for validation, and 5,000 images for testing.

Meanwhile, two evaluation settings are considered in this paper:

1) MS-COCO 1K, the final result is calculated by averaging the

results over 5-folds of 1K testing images; and 2)MS-COCO 5K, the

evaluation result is directly calculated on the full 5K testing images.

4.2 Experimental Settings

4.2.1 Evaluation Protocols. Following the existing baselines [15,

16, 26], we adopted Recall at K, R@K (K=1, 5, and 10) for short, as

the evaluation metrics, which are commonly utilized in the infor-

mation retrieval community. To be specific, R@K is defined as the

percentage of ground truth being retrieved at top-K results. The

higher R@K indicates the better performance.

4.2.2 Implementation Details. We optimized our proposed model

on 1 GeForce RTX 2080 Ti GPU using PyTorch library. The Adam

optimizer is employed with a mini-batch size 64 and 30 epochs. The

6If 𝑥 is an image instance, we apply BERT to the sentence corresponding to it.
7In a mini-batch with size 𝐵, 𝐵 sentences/images would be interact with the given
image/sentence 𝑥 , hence we can get 𝐵 path vectors for 𝑥 . We then utilize average-
pooling to obtain g𝑥 .
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Table 1: Performance comparison between our proposed DIME and several state-of-the-art baselines on the Flickr30K and

MS-COCO datasets. And statistical significance over R@1 between DIME* and the best baseline (i.e., CAMERA*) is determined

by a t-test (� denotes p-value < 0.01). The symbol ‘*’ refers to the ensemble result. The best performance is highlighted in bold.

Flickr30K Dataset MSCOCO (1K) Dataset MSCOCO (5K) Dataset

Method
Image-to-Text Text-to-Image Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

SCAN* [15] 67.4 90.3 95.8 48.6 77.7 85.2 72.7 94.8 98.4 58.8 88.4 94.8 50.4 82.2 90.0 38.6 69.3 80.4

CAMP [33] 68.1 89.7 95.2 51.5 77.1 85.3 72.3 94.8 98.3 58.5 87.9 95.0 50.1 82.1 89.7 39.0 68.9 80.2

BFAN* [21] 68.1 91.4 - 50.8 78.4 - 74.9 95.2 - 59.4 88.4 - - - - - - -

SAEM [37] 69.1 91.0 95.1 52.4 81.1 88.1 71.2 94.1 97.7 57.8 88.6 94.9 - - - - - -

CAAN [40] 70.1 91.6 97.2 52.8 79.0 87.9 75.5 95.4 98.5 61.3 89.7 95.2 52.5 83.3 90.9 41.2 70.3 82.9

DP-RNN [4] 70.2 91.6 95.8 55.5 81.3 88.2 75.3 95.8 98.6 62.5 89.7 95.1 - - - - - -

VSRN* [16] 71.3 90.6 96.0 54.7 81.8 88.2 76.2 94.8 98.2 62.8 89.7 95.1 53.0 81.1 89.4 40.5 70.6 81.1

SGM [32] 71.8 91.7 95.5 53.5 79.6 86.5 73.4 93.8 97.8 57.5 87.3 94.3 50.0 79.3 87.9 35.3 64.9 76.5

IMRAM [3] 74.1 93.0 96.6 53.9 79.4 87.2 76.7 95.6 98.5 61.7 89.1 95.0 53.7 83.2 91.0 39.6 69.1 79.8

MMCA [35] 74.2 92.8 96.4 54.8 81.4 87.8 74.8 95.6 97.7 61.6 89.8 95.2 54.0 82.5 90.7 38.7 69.7 80.8

GSMN* [22] 76.4 94.3 97.3 57.4 82.3 89.0 78.4 96.4 98.6 63.3 90.1 95.7 - - - - - -

ADAPT* [34] 76.6 95.4 97.6 60.7 86.6 92.0 76.5 95.6 98.9 62.2 90.5 96.0 - - - - - -

CAMERA* [26] 78.0 95.1 97.9 60.3 85.9 91.7 77.5 96.3 98.8 63.4 90.9 95.8 55.1 82.9 91.2 40.5 71.7 82.5

DIME (i-t) 77.4 95.0 97.4 60.1 85.5 91.8 77.9 95.9 98.3 63.0 90.5 96.2 56.1 83.2 91.1 40.2 70.7 81.4

DIME (t-i) 77,5 93.5 97.5 59.1 85.5 91.0 77.2 95.5 98.5 62.3 90.2 95.8 55.3 82.4 90.2 39.7 70.3 81.0

DIME* 81.0� 95.9 98.4 63.6� 88.1 93.0 78.8� 96.3 98.7 64.8� 91.5 96.5 59.3� 85.4 91.9 43.1� 73.0 83.1

learning rate is set as 0.0002 with decaying 10% of every 15 epochs.

The snapshot with the highest sum of the recalls on the validation

set is selected for testing. The dimension of visual features 𝐷𝑣 is

2,048 and the number of visual regions 𝑅 is 36. The basic version of

the pre-trained BERT [5] is leveraged, equipped with 12 layers, 12

heads, 768 hidden units, and 110M parameters in total, to obtain the

original word embeddings with dimension 𝐷𝑡 = 768. The dimen-

sion of joint embedding space 𝐷 is set to 256. As for the inverted

temperature factor 𝜆 in Eqn. (6), we set it to 4 and 9 on the I2T and

T2I tasks, respectively. In addition, the number of routing layers

𝐿, the trade-off parameter 𝜆𝑃 in Eqn. (13), and the head number of

intra-modal reasoning cell 𝐻 are set to 3, 0.5, and 16, respectively.

4.3 Performance Comparison

To justify the effectiveness of our proposed DIME model, we com-

pared it with the following state-of-the-art baselines in the task of

image-text retrieval.

• Methods that focus on exploring intra-modal interactions,

namely, SAEM [37], VSRN [16], and CAMERA [26].

• Methods that aims to design different cross-modal interac-

tion modules, namely, SCAN [15], CAMP [33], BFAN [21],

IMRAM [3], and ADAPT [34].

• Methods that synchronously model intra- and cross-modal

interactions, namely, CAAN [40], DP-RNN [4], SGM [32],

MMCA [35], and GSMN [22].

Note that we directly quoted the results of these baselines from

their original papers, except for CAMERA8. Bedsides, in addition to

the singlemodel DIME (i-t) andDIME (t-i), we provided an ensemble

model DIME* for fair comparison, i.e., averaging similarity scores

of two single models.

The comparison results are summarized in Table 1. By analyzing

this table, we gained the following observations:

• Among intra-modal interaction pattern basedmethods, CAM-

ERA* [26] surpasses VSRN* [16] by a large margin on two

8We reproduced CAMERA (https://acmmmcamera.wixsite.com/camera) for the fol-
lowing significance test.

datasets. Although VSRN* builds up connections between

image regions, CAMERA* designs more gorgeous internal

operations. To be specific, it builds a gating self-attention

mechanism for context modeling and a multi-view summa-

rization module for asymmetry matching. This fact indi-

cates that elaborately establishing interaction modules is

extremely essential for image-text retrieval.

• Regarding cross-modal interaction pattern based approaches,

IMRAM [3] outperforms SCAN* [15] on all criteria of two

datasets. Because it could capture high-order correspon-

dences via an iterative cross-attention framework, verifying

the importance of aggregating high-order interactions and

integrating the iteration strategy.

• Hybrid interaction pattern based methods (e.g., MMCA [35]

and GSMN* [22]) are superior to those based on the cross-

modal interaction pattern (e.g., SCAN* [15]) and the intra-

modal interaction pattern (e.g., VSRN* [16]). This reveals

that jointly modeling the intra- and inter-modal interactions

plays a significant role in image-text retrieval, contributing

to more powerful representation and enhancing alignment.

• Our proposed model DIME* outperforms the compared base-

lines regarding R@K with different depth on Flickr30K and

MS-COCO. Compared with CAMERA*, our approach obtains

relative R@1 gains with 3.8% at I2T retrieval on Flickr30K,

and it achieves improvement with nearly 1.7% and 7.6% R@1

gain on the MS-COCO (1K) and MS-COCO (5K) test set, re-

spectively. Likewise, for T2I retrieval, our model produces

the best results over previous methods on all metrics. The

improvement indicates the feasibility and importance of dy-

namically exploring modality interaction patterns.

• The results of our single model DIME (i-t) and DIME (t-i) are

competitive to some state-of-the-art methods, especially the

prior ensemble models (e.g., VSRN* [16] and GSMN* [22]).

This further demonstrates the effectiveness and robustness

of our proposed model and indicates the remarkable ability

of our interaction modules. Moreover, it is can be observed
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Table 2: The ablation study on Flickr30K to investigate the

effect of different modality interaction cells. The best results

are highlighted in bold.

Model

DIME (i-t) DIME (t-i)

Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

w/o RIC 76.4 93.2 59.8 85.4 75.7 94.1 58.8 83.9

w/o IMRC 75.6 93.5 58.1 84.8 73.3 91.9 58.0 84.1

w/o GLGC 75.9 94.3 59.9 85.4 75.0 94.5 59.2 85.1

w/o CMRC 68.9 90.1 51.2 80.7 61.2 86.2 47.7 77.4

Full 77.4 95.0 60.1 85.5 77.5 93.5 59.1 85.5
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Figure 4: The ablation study on Flickr30K to justify the effect

of the soft router.

that the performance of DIME (t-i) is slightly inferior to that

of DIME (i-t). This may be because that sentences are more

abstract and subjective.

In addition, we also conducted the significance test over R@1

between our model and the most competitive baseline CAMERA*.

To be specific, on Flickr30K, the p-values of I2T and T2I retrieval are

2.0E-3 and 9.2E-8, respectively. On MS-COCO (1K), the p-values are

separately 9.4E-5 and 3.6E-7. Moreover, the corresponding p-values

on MS-COCO (5K) are 4.9E-7 and 1.3E-8, respectively. It can be seen

that these p-values are observably smaller than 0.01, indicating the

statistically significant advantage of our model DIME.

4.4 Module Analysis

In this section, we carried out several experiments on Flickr30K

using the single model (i.e., DIME (i-t) and DIME (t-i)) to further an-

alyze the effectiveness of our model. Specifically, we first explored

how each component of our framework affects the image-text re-

trieval results, including four modality interaction cells, the router,

and the path regularization term. We then displayed how the num-

ber of routing layers influences the retrieval performance.

4.4.1 Modality Interaction Cells. To gain the insights into our four

interaction cells, we conducted ablation studies incrementally. To

be more specific, we compared our model DIME with the following

variants: 1) w/o RIC, removing the rectified identity cell; 2) w/o

IMRC, eliminating the intra-modal reasoning cell; 3) w/o GLGC,

without the global-local guidance cell; and 4)w/oCMRC, excluding

the cross-modal refinement cell.

As reported in Table 2, compared with our model, the perfor-

mance of w/o CMRC degrades dramatically. Particularly, It drops

absolutely by 8.5% and 8.9% on R@1 of I2T and T2I for DIME

(i-t), respectively. This demonstrates the vital importance of local-

local cross-modal interaction as it can capture local discriminative

clues. Besides, our model achieves better results than w/o IMRC,

Table 3: Performance comparison on Flickr30Kwith different

trade-off values for path regularization. The best results are

highlighted in bold.

𝜆𝑃

DIME (i-t) DIME (t-i)

Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

0 76.0 93.8 58.7 85.2 76.0 93.7 59.9 85.2

0.1 76.4 94.1 59.4 85.3 76.3 94.7 59.7 85.2

0.5 77.4 95.0 60.1 85.5 77.5 93.5 59.1 85.5

1.0 76.0 93.0 59.5 85.2 76.1 94.3 60.0 84.6

2.0 75.7 93.7 59.7 85.8 73.0 92.9 58.2 84.6
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Figure 5: Results comparison on Flickr30K regarding differ-

ent number of routing layers 𝐿.

revealing that the intra-modal reasoning cell can enhance the rep-

resentations of local fragments and boost the model performance.

Moreover, the performance drop of w/o GLGC can be observed,

indicating that it is important to consider the global information

from another modality as the guidance to enhance the local rep-

resentations of current modality. In general, our proposed model

largely exceeds all variants on I2T and T2I retrieval, verifying the

effectiveness and complementarity of four interaction cells.

4.4.2 The Router. To validate the impact of our proposed soft

router, we conducted a series of experiments by introducing two

variants: 1) Random, deriving the path probability of each cell

from a uniform distribution (i.e., 𝑔 ∼ 𝑈 [0, 1]) independently; and
2) Hard, adopting the hard router. In other words, on the basis of

[31], we introduced the gumbel-softmax [13] trick to discretize path

values (i.e., 𝑔 ∈ {0, 1}), which enables the network to be optimized

end-to-end by back propagation algorithm.

From the Figure 4, we observed that our proposed soft router

achieves the best performance across all metrics consistently. Al-

though the hard version does not perform as well as the soft version,

it still obtains better results than the random variant. These facts

demonstrate that the routers are capable of learning appropriate

paths for different inputs automatically, enabling the model to ex-

plore more possible optimal modality interaction patterns.

4.4.3 Path Regularization. To justify the effectiveness of the rout-

ing regularization term discussed in Section 3.4.2, we designed a

group of experiments by setting different 𝜆𝑃 in Eqn. (13). The results

are summarized in Table 3.

From Table 3, we could see that the path regularization improves

the performance as compared with the results in the first row (i.e,

without regularization). This strongly illustrates the validity of

the path regularization. Moreover, the performance first improves

before reaching the saturation point (i.e., 𝜆𝑃=0.5), and then begins

to decline slightly. The main reason may be that overly encouraging
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Figure 6: Visualization of modality interaction path using T-SNE on Flickr30K. Each point denotes an image-level path vector

learned via DIME (i-t). Different colors indicate different cluster labels assigned by spectral clustering [25].

the diversity of paths lead to a serious over-fitting phenomenon.

Besides, the performance of our model changes within small ranges

nearby the optimal setting. This justifies that our model is non-

sensitive and robust to the parameter around its optimal setting.

4.4.4 Parameter Analysis. To explore the impact of the parameter

𝐿 (i.e., the number of routing layers), we conducted experiments by

increasing it from 1 to 5. The results are shown in Figure 5.

From the comparison results, we could find that increasing the

number of layers in an appropriate range (i.e., from 1 to 3) can

improve the retrieval performance by enhancing the representation

ability of the model. This can be attributed to that more layers offer

broader path space, thus increasing the probability of searching

more unexplored superior patterns. However, when 𝐿 is greater

than 3, the performance begins to drop. The reason may be that the

path space becomes very uneven, limiting the model optimization

and further hindering the path learning.

4.5 Path Visualization

Apart from achieving the superior performance, the key advan-

tage of DIME over other methods is that its dynamic interaction

modeling strategy is able to adaptively assign different modality

interaction paths for different inputs. To this end, we showed some

images and visualized their path vectors learned by DIME (i-t). To be

specific, we first obtained the path vector for each image, and then

used t-SNE [29] to map the path vector into the two-dimensional

space. Afterwards, we clustered these 2D vectors into five groups,

where each group marked in one color, as shown in Figure 6.

From Figure 6, we could see that the images related to human

(shown in black, blue, and green points) and the ones related to

animals (shown in red and yellow points) can be well distinguished,

according to the distribution of learned path vectors. For instance,

there is a large margin between the red points (related to dogs)

and the black ones (associated with basketball players), as they

are clearly distinct. Although both red and yellow points are re-

lated to animals, they are still wide apart. Because there is much

difference in their fine-grained semantics. Our proposed semantic

regularization can transfer this knowledge to the routers, thus our

model can learn entirely different paths for them. Likewise, diverse

activity scenes are also discriminated by path vectors, such as the

public events with lots of crowds (top green points), sports events

(black points), and music activities (bottom blue points). These re-

sults demonstrate that 1) our model can intelligently learn specific

semantic-aware paths for different inputs, therefore the distribu-

tion of learned paths is consistent with that of semantics to some

extent. And 2) our proposed soft router is capable of perceiving,

understanding, and reasoning multimodal data dynamically.

To gain the deep insights into our proposed dynamic modality

interaction modeling scheme, we illustrated several results with

different paths. Concretely, we employed 0.7 as the threshold to

discretize the learned paths (i.e., only showed paths of which the

probability values greater than the threshold) for improving the

intuitiveness. The results obtained from DIME (i-t) and DIME (t-i)

are displayed in the first and second row of Figure 7, respectively.

We gained the following observations. 1) More complicated inputs

require more complex interaction paths, which is consistent with

the perception of the human brain. For instance, the first image in

the first row simply depicts a man in a horse, and it merely activates

a few interaction cells. 2) The main difference between the second

and the third columns lies in the higher layers of the routing space.

Because samples with different semantics may share similar low-

level patterns. And 3) samples with more detailed clues require
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Cowboy at a rodeo riding a horse. 
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A father and daughter holding a young tree upright, ready to be planted, as 
the son stands to their side wielding a shovel.
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A girl in a jean dress is walking along a raised balance beam.
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Young boy wearing 
apron standing on step 
stool cutting meat 
with butter knife.
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A woman in blue looks in a 
black leather bag while sitting 
on a bench during a sunny 
afternoon while people and 
limousines passed behind her.

CosCosCos

Figure 7: Illustrations of modality interaction patterns. Three examples in the first row are output by DIME (i-t), and the ones

in the second row are generated by DIME (t-i).

1. A brown dog frolics in a field carrying a plush toy.
2. A dog jumps and catches a chew toy.
3. A curly brown dog runs across the lawn carrying a 
toy in its mouth. 

1. In rural outdoors, blond woman sits on roof of 
yellow Benz vehicle, two people inside.
2. Two people drive a Jeep while a lady sits on the top 
of it.
3. Girl on roof of jeep being driven down road.

1. A group of spectators watch a men's sand 
volleyball game.
2. Men playing volleyball in the sand.
3. Two males playing volleyball on the beach.  

Figure 8: Top-3 image-to-text retrieval results on Flickr30K.

The ground-truth texts are marked with green checks, and

the wrong results are indicated by cross marks.

more cross-modal refinement cells since they need more cross-

modal local-to-local interaction information. These observations

reveal that our model can learn different interaction patterns for

different samples dynamically. More importantly, these patterns

obtained by automatic routing learning may provide some valuable

insights for more efficient pattern design in the future.

4.6 Qualitative Results

To qualitatively validate the effectiveness of DIME, we displayed

several typical examples on I2T retrieval and T2I retrieval in Fig-

ure 8 and Figure 9, respectively. Based on these retrieval results,

we could see that our model could comprehend abstract short or

complex long sentences accurately. Meanwhile, it is robust for sim-

ple or complex images, which is mainly attributed to the dynamic

interaction modeling capability of our proposed model. Specially,

the rank-3 sentence of the third image query in Figure 8 demon-

strates that it is still challenging to count entities exactly due to

the language prior problem [9] on existing datasets. Although the

rank-1 image of the Query (b) in Figure 9 is not the ground-truth,

it is still reasonable for semantic-level retrieval. Actually, it is even

difficult for human to distinguish these top-3 results.

Query (a): Two men wearing hats and holding canes are standing silhouetted 
against a large body of water with sunlight reflecting off the water and a 
tree to the side .

Query (b): A dog jumps over a hurdle at a competition.

Figure 9: Top-3 text-to-image retrieval results on Flickr30K.

The matched images are annotated in green boxes, and the

false ones are in red.

5 CONCLUSION AND FUTUREWORK

In this paper, we present a unified modality interaction modeling

framework towards image-text retrieval, which is the first work

on exploring interaction patterns by dynamic routing learning.

Concretely, we first design four types of cells to execute different

internal interaction operations and dynamic routers for routing

learning. We then introduce a semantic-path consistence regular-

ization for path decision. Extensive experimental results on two

benchmarks have demonstrated the effectiveness and superiority

of our proposed method.

In the future, we plan to explore more applications of dynamic

mechanism in information retrieval systems under the constraint of

given computing resources, making it more flexible and extensible.
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