Cross-Platform App Recommendation by Jointly Modeling Ratings
and Texts

DA CAQO, Xiamen University

XIANGNAN HE, National University of Singapore
LIQIANG NIE, Shandong University

XIAOCHI WEI, Beijing Institute of Technology

XIA HU, Texas A&M University

SHUNXIANG WU, Xiamen University

TAT-SENG CHUA, National University of Singapore

Over the last decade, the renaissance of Web technologies has transformed the online world into an appli-
cation (App) driven society. While the abundant Apps have provided great convenience, their sheer number
also leads to severe information overload, making it difficult for users to identify desired Apps. To allevi-
ate the information overloading issue, recommender systems have been proposed and deployed for the App
domain. However, existing work on App recommendation has largely focused on one single platform (e.g.,
smartphones), while it ignores the rich data of other relevant platforms (e.g., tablets and computers).

In this article, we tackle the problem of cross-platform App recommendation, aiming at leveraging users’
and Apps’ data on multiple platforms to enhance the recommendation accuracy. The key advantage of
our proposal is that by leveraging multiplatform data, the perpetual issues in personalized recommender
systems—data sparsity and cold-start—can be largely alleviated. To this end, we propose a hybrid solution,
STAR (short for “croSs-plaTform App Recommendation”) that integrates both numerical ratings and textual
content from multiple platforms. In STAR, we innovatively represent an App as an aggregation of common
features across platforms (e.g., App’s functionalities) and specific features that are dependent on the resided
platform. In light of this, STAR can discriminate a user’s preference on an App by separating the user’s
interest into two parts (either in the App’s inherent factors or platform-aware features). To evaluate our
proposal, we construct two real-world datasets that are crawled from the App stores of iPhone, iPad, and
iMac. Through extensive experiments, we show that our STAR method consistently outperforms highly
competitive recommendation methods, justifying the rationality of our cross-platform App recommendation
proposal and the effectiveness of our solution.

CCS Concepts: ® Information systems —~ Recommender systems; Collaborative filtering

Additional Key Words and Phrases: App recommendation, cross-platform, hybrid system, cold-start

This work was finished when Da Cao was a visiting student at the National University of Singapore. The
first author claims that this work is under the supervision of Dr. Xiangnan He and Dr. Ligiang Nie. This
work is supported by the NExT research center, which is supported by the National Research Foundation,
Prime Ministers Office, Singapore under its IRC@SG Funding Initiative. This work is also supported by the
National Natural Science Foundation of China under Grant No. 61673327.

Authors’ addresses: D. Cao and S. Wu (corresponding author), Department of Automation, Xiamen
University, Xiamen, 361005, P. R. China; emails: caoda0721@gmail.com, sxwu@xmu.edu.cn; X. He and
T.-S. Chua, School of Computing, National University of Singapore, Singapore, 117417, Singapore; emails:
xiangnan@comp.nus.edu.sg, dcscts@nus.edu.sg; L. Nie, School of Computer Science and Technology,
Shandong University, Jinan, 250101, P. R. China; email: nieligiang@gmail.com; X. Wei, School of Computer
Science, Beijing Institute of Technology, Beijing, 100081, P. R. China; email: wxchi@bit.edu.cn; X. Hu,
Department of Computer Science and Engineering, Texas A&M University, College Station, 77843-3112,
USA; email: hu@cse.tamu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2017 ACM 1046-8188/2017/07-ART37 $15.00

DOI: http://dx.doi.org/10.1145/3017429

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

http://dx.doi.org/10.1145/3017429

37:2 D. Cao et al.

ACM Reference Format:

Da Cao, Xiangnan He, Ligiang Nie, Xiaochi Wei, Xia Hu, Shunxiang Wu, and Tat-Seng Chua. 2017. Cross-
platform app recommendation by jointly modeling ratings and texts. ACM Trans. Inf. Syst. 35, 4, Article 37
(July 2017), 27 pages.

DOT: http://dx.doi.org/10.1145/3017429

1. INTRODUCTION

With the flourishing of network technologies, people now can easily access the Internet
through a variety of ways, such as smartphones and tablets. Regardless of the platform,
Apps play a central role in providing services for users. For example, people can chat
with friends with WhatsApp on mobile phones, watch videos of interest with YouTube
on tablets, and handle some business stuffs with Microsoft Office on PCs. Although the
wide variety of Apps have offered great convenience to people’s lives, they have also
made it difficult for users to identify the most desirable Apps. In other words, users are
overwhelmed by the vast number of Apps—for one functionality, such as reading news,
there can be over hundreds or even thousands of similar Apps available; even for one
specific App, the different versions on different platforms (e.g., smartphones, tablets,
and computers) make the App identification process even complicated.

The recommender system is a well-known solution for addressing the information
overloading problem and helping users identify relevant information on the Web. It
suggests items of interest to a user by mining the history of other similar users (collab-
orative filtering), or matching the user’s profile with items’ attributes (content filter-
ing), or integrating both (hybrid filtering). Popularized by the Netflix challenge [Koren
2010], recommender systems have been intensively studied by the research community
in recent years, and many recommendation techniques have been explored, such as the
association rule-based [Parameswaran et al. 2011], graph-based [He et al. 2015], and
latent factor-based models [Ge et al. 2014]. However, we argue that existing work is far
from sufficient to address the App recommendation problem. This is because (1) most
previous efforts have focused on item recommendation of general domains such as
movies, books, and products, rather than the specific domain of Apps that has quite dif-
ferent properties; (2) although a few recent works have targeted the App domain [Lin
et al. 2013, 2014a], they have primarily considered a single platform (mostly, Apps of
the mobile stores). As a key and unique feature of App, we point out that the platform
plays an important role in influencing a user’s decision on items. For example, people
tend to do some light entertainment on mobile phones (for the sake of convenience),
such as listening to music and reading news, while many choose computers to perform
some complicated jobs (for the sake of efficiency), such as making slides and planning
activities. If a recommender system simply suggests Apps while ignoring their platform
properties, it may end up with unsuitable Apps and adversely hurt users’ experience.
To provide a quality App recommendation service for users, it is inevitable to take the
factor of platform into account.

In this work, we pay special attention to the platform-aware App modeling, focus-
ing on the problem of cross-platform recommendation. Our key consideration is that,
by accounting for users’ cross-platform behaviors as well as items’ platform-specific
properties, the accuracy of App recommendation can be significantly improved. As il-
lustrated in Figure 1, in contrast to traditional App recommender systems that treat
the data of each platform independently, our proposed cross-platform recommender
system jointly models the App data of all platforms as a whole, enhancing the accuracy
by explicitly modeling an App’s common features (across all platforms) and specific
features (of one single platform). Specifically, our method is designed to address the
following four key challenges in App recommendation:

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

http://dx.doi.org/10.1145/3017429

Cross-Platform App Recommendation by Jointly Modeling Ratings and Texts 37:3

o e

Fig.

Single Platform App Recommendation

Smartphone
Tablet J‘?“?t
Training
Computer

1. Illustration of two App recommendation solutions: (1) traditional single platform-based recommenda-

tion that treats the data of each platform independently, and (2) our proposed cross-platform recommendation
that considers the correlation of data on different platforms.

(D

(2)

(3)

Platform Variance. A platform corresponds to the specific hardware device that
users use to operate Apps. Considering that different devices exhibit varying prop-
erties (e.g., computers have a larger screen but are less portable compared with
smartphones and tablets), App developers usually customize an App for a plat-
form. This leads to significant differences of Apps’ features on different platforms.
As such, this kind of platform variance calls for a method that can capture both
general characteristics and platform-specific features of Apps to provide quality
recommendations for users.

Data Heterogeneity. Apps are usually downloaded from online App markets, the
data on which exhibits dual-heterogeneities, consisting of numerical ratings and
textual content. Numerical ratings explicitly quantify users’ satisfaction on an App,
which are the most widely used source for recommender systems. While the textual
content is much richer—including users’ reviews on Apps, developers’ descriptions
of Apps, among others—which is complementary to users’ ratings. More impor-
tantly, the textual content helps to uncover the specificities of Apps and platforms.
How to effectively leverage the valuable information in the heterogeneous data and
seamlessly sew them up is a highly challenging problem in recommender systems.
Data Sparsity. Data sparsity is a well-known issue faced by personalized recom-
mender systems. It is evidenced that in the user—item rating matrix, only a small
proportion of entries are known (usually less than 1%). We find the uneven popu-
larity distribution of an App on different platforms makes the data sparsity issue
even more complicated. For example, the game Angry Birds is a free-download
App on phones and tablets, but it charges for the PC version. As a result, people

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

37:4 D. Cao et al.

seldom play Angry Birds on PCs, resulting in few ratings of the game on the PC
platform. But considering that an App may have more ratings on other platforms,
how to integrate data from multiple platforms to alleviate the data sparsity issue
is important to enhance recommendation accuracy.

(4) Cold-Start Problem. The extreme case of data sparsity is cold-start, where we
need to provide recommendations for new users or items that have no historical
ratings. As a perpetual issue in personalized recommender systems, cold-start
is usually approached by utilizing some content-based side information [Schein
et al. 2002; Zhou et al. 2011; Lin et al. 2013]. Here, we argue that our proposal of
cross-platform recommendation can help alleviate the cold-start problem of single-
platform to a certain extent; particularly for two scenarios: (1) a user is new to
a platform (user cold-start) but has a rating history on other platforms; (2) an
App is first released on a platform (item cold-start) but has counterparts on other
platforms. For these two cold-start cases, the key challenge is how to transfer the
knowledge learntlearned from the non-cold-start platforms to effectively enrich
users’ and Apps’ representation of cold-start platforms.

To address the aforementioned challenges, we present a hybrid filtering system STAR
(short for “croSs-plaTform App Recommendation”) that models both numerical ratings
and textual content from multiple platforms for enhanced recommendation. The core
component of our STAR method is a matrix factorization-based latent factor model,
which is extended to support (1) factorizing rating matrices from multiple platforms,
and (2) incorporating textual content that is abstracted from topic models. We use item
latent factors (learned from rating matrices) to encode an App’s common features across
platforms, and use item latent topics (learned from textual content) to differentiate an
App’s specific features of each platform. The aggregation of an App’s common features
and specific features is finally served as the representation of the App. In light of this,
the data sparsity and cold-start problems of one single platform can be mitigated to a
large extent.

To demonstrate the effectiveness of our solution, we conduct extensive experiments
on our crawled real-world App data. First, we compare the overall prediction per-
formance with the standard latent factor model [Koren 2008], semantics enhanced
method [Ling et al. 2014], context-aware method [Rendle et al. 2011], and cross-domain
method [Singh and Gordon 2008]. Our results and statistical significance test show that
STAR significantly outperforms state-of-the-art methods. Second, we investigate the
new-user and new-App cold-start scenarios, admitting that STAR is superior to the
previous solutions. Lastly, to show the rationality of our design, we further dissect our
method and perform some fine-grained analyses.

To summarize, this article contributes in the following three aspects:

—We explore a new problem of cross-platform App recommendation. To the best of our
knowledge, this is the first work that attempts to solve this problem in the domain
of App recommendation.

—We develop a novel solution, STAR, to improve the App recommendation by jointly
modeling numerical ratings and textual content. Such a hybrid system is well suited
for resolving the data sparsity and cold-start issues in personalized recommender
systems.

—We construct new datasets for studying the cross-domain App recommendation prob-
lem. To facilitate the research community and encourage future research on the
emerging topic, we have released the datasets and our implementations.!

Thttp://apprec.wixsite.com/star.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

http://apprec.wixsite.com/star

Cross-Platform App Recommendation by Jointly Modeling Ratings and Texts 37:5

The article is structured as follows. After discussing related work in Section 2, we
elaborate our solution STAR that combines cross-platform matrix factorization and
platform-aware App modeling in Section 3. Before diving into the experimental evalu-
ation in Section 5, we describe the construction of the datasets in Section 4. Lastly, we
conclude the full article in Section 6.

2. RELATED WORK

In this section, we provide a comprehensive review of the relevant literature. We group
the related work into five categories. First, we briefly review the collaborative filtering
technique, which models ratings only and is the most widely used method in recom-
mendation systems. Then, we discuss some work that attempts to combine ratings
and textual content, which we refer to as “semantics enhanced recommendation.” The
third category covers context-aware recommender systems which model additional
information that can affect users’ rating behaviors (e.g., location, time, weather, and
companion). Context-aware methods are relevant with our proposal, since the platform
information can also be seen as a “context” in the App recommendation. Furthermore,
we review work of cross-domain recommendation, which leverage the data of auxil-
iary domains to improve the recommendation of the target domain. Lastly, we discuss
existing work on mobile App recommendation to position our work among them.

2.1. Collaborative Filtering

In terms of collaborative filtering approaches, work can be classified into two categories,
namely, neighborhood methods [Breese et al. 1998; Herlocker et al. 1999; Sarwar et al.
2001] and latent factor methods [Hofmann and Puzicha 1999; Hofmann 2004; Koren
and Bell 2011]. Latent factor methods focus on fitting the user-item rating matrix using
low-rank approximations and applying the matrix to identify new user-item associa-
tions, which have be proven to be superior to neighborhood methods [Takacs et al.
2008]. As one of the most representative realizations of latent factor models, Matrix
Factorization (MF) [Koren et al. 2009] characterizes both items and users by latent
vectors inferred from observed ratings. The realization of MF can be generalized as
a probabilistic model, known as Probabilistic Matrix Factorization (PMF) [Mnih and
Salakhutdinov 2007]. An effective way to solve the matrix approximations is to mini-
mize the sum of squared errors, which can be tackled using Sngular Value Decomposi-
tion (SVD) [Hu et al. 2008]. The SVD++ [Koren 2008] model offers an improved accuracy
by accounting for the implicit information recording which items were rated (regard-
less of their rating values). Collaborative filtering with implicit feedback is usually
formulated as an item recommendation task, for which accounting for missing entries
is crucial to the performance. The Weight Matrix Factorization (WMF) [Hu et al. 2008]
follows a regression framework to optimize a squared loss, carefully weighting the ob-
served entries and missing data with different weights. Another well-known solution is
Baysian Personalized Ranking (BPR) [Rendle et al. 2009], which optimizes models with
a ranking-aware pairwise loss. The idea is that an observed entry should be assigned a
higher score than a missing entry. However, collaborative filtering methods only model
numerical ratings and forgo auxiliary information, such as texts and contexts. In this
work, we supercharge collaborative filtering with user reviews, item descriptions, and
cross-domain information to improve App recommendation performance.

2.2. Semantics Enhanced Recommendation

Semantics enhanced methods attempt to improve recommendation quality by using
ratings and textual content simultaneously. For Apps, the textual content can be App
descriptions, version descriptions, and reviews. As representative text processing tech-
niques, topic models, such as Probabilistic Latent Semantic Indexing (PLSI) [Hofmann

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

37:6 D. Cao et al.

1999], Probability Latent Semantic Analysis (PLSA) [Hofmann 2001], Latent Dirich-
let Allocation (LDA) [Blei et al. 2003], and Non-negative Matrix Factorization (NMF)
[Lin 2007], have been widely accepted to interpret low-dimensional representations of
documents [Cai et al. 2008; Chang et al. 2009]. The approach of Collaborative Topic
modeling (CTR) [Wang and Blei 2011] integrates the merits of traditional collaborative
filtering with probabilistic topic modeling to recommend scientific articles. The method
of Hidden Factors as Topics (HFT) [McAuley and Leskovec 2013] combines ratings with
review texts for product recommendations, which works by aligning hidden factors in
product ratings with hidden topics in product reviews. The model of TopicMF [Bao et al.
2014] recommends products by jointly considering user ratings and unstructured re-
views. As an improvement of HF'T, the technique of RMR (Ratings Meet Reviews) [Ling
et al. 2014] combines content-based filtering with collaborative filtering seamlessly,
which exploits the information in both ratings and reviews. Most previous efforts [Nie
et al. 2014; He et al. 2014a, 2015] enhance recommendation performance by consider-
ing semantic information in review texts or item descriptions. However, using textual
content to distinguish the differences among items is rarely considered. In this article,
to model the differences among Apps on different platforms, we utilized a topic model
to learn semantic information of reviews and App descriptions on different platforms,
which contain rich information of platform-aware ratings.

2.3. Context-Aware Recommender Systems

Context information has been proven to be useful for providing recommendations
[Palmisano et al. 2008], and relevant context-aware recommendation approaches
have been proposed. According to the survey of Adomavicius and Tuzhilin [2011],
context-aware recommendation methods can be classified as prefiltering [Adomavicius
et al. 2005], where context drives data selection; postfiltering [Panniello et al. 2009],
where context is used to filter recommendations after traditional method; and con-
text modeling, where context is integrated directly into the model. However, the work
on prefiltering and postfiltering requires supervision and fine-tuning in all steps of
recommendation. Recent context modeling methods use all the context and user-item
rating matrices simultaneously and build models based on matrix factorization meth-
ods. Multiverse recommendation [Karatzoglou et al. 2010] presents a collaborative
filtering method based on tensor factorization that allows for a flexible and generic
integration of contextual information by modeling the data as a user-item-context
N-dimensional tensor instead of the traditional 2D user-item matrix. Factorization
Machines (FM) [Rendle et al. 2011] are applied to model contextual information and
to provide context-aware predictions. Contextual Operating Tensor (COT) [Liu et al.
2015] is proposed, which represents the common semantic effects of contexts as a COT
and represents a context as a latent vector. More recently, Hsieh et al. [2016] has
presented an Immersive Recommendation system, which incorporates users’ digital
traces from different contexts into recommendations. However, using external textual
content to model the influence of context has been seldom considered. In this article, we
introduced the textual content of reviews and App descriptions to capture the influence
of platform in App recommendation, which is different from traditional context-aware
recommender systems.

2.4. Cross-Domain Recommender Systems

According to the survey of Fernandez-Tobias et al. [2012], cross-domain recommender
systems can be categorized into two categories. One of them is adaptive models that ex-
ploit information from a source domain to make recommendations in a target domain.
The works of Zhang et al. [2011], Hu et al. [2013], Jamali and Lakshmanan [2013], Li
and Lin [2014], and Jiang et al. [2015] focus on user attributes, domain-specific factors,

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

Cross-Platform App Recommendation by Jointly Modeling Ratings and Texts 377

context-dependent entity type, matching of users and items, and social networks, re-
spectively. The other category is collective models that are built with data from several
domains and potentially can make joint recommendations for such domains. Collective
Matrix Factorization (CMF) [Singh and Gordon 2008] factorizes several matrices and
shares parameters among factors simultaneously when an entity participates in mul-
tiple relations. And it has been applied in attribute-aware relation prediction [Lippert
et al. 2008] and social rating networks [Yang et al. 2011]. Collective models are suit-
able for our App recommendation task, since the recommendation performance of all
platforms should be improved in our work. However, we observe that both adaptive
models and collective models are either content-based or collaborative filtering-based,
and hybrid cross-domain recommendation approaches have been barely investigated.
In our task, we used numerical ratings and textual content simultaneously to capture
common features and distinguish specific features of Apps on all platforms.

2.5. Mobile App Recommendation

In order to deal with the increasing number of Apps, some works on mobile App recom-
mendation are emerging. Some of these works focus on constructing context-aware rec-
ommender systems on the platform of mobile device, which contains rich context-aware
information (e.g., location, social network, and activity) [Zheng et al. 2010; Karatzoglou
et al. 2012; Zhu et al. 2012; Liu et al. 2013]. Personalized recommendation on the plat-
form of mobile device has attracted a lot of attention [Liu et al. 2011; Costa-Montenegro
et al. 2012; Bohmer et al. 2013; Lin et al. 2014b]. The similarity of mobile Apps has been
investigated by using graph [Bhandari et al. 2013] or kernel function [Chen et al. 2015,
2016]. At the same time, some specific features of mobile Apps are utilized to improve
mobile App recommendation results. Ranking [Yankov et al. 2013] and popularity [Zhu
et al. 2015] are well studied, since they are useful for understanding user experiences
and learning the process of adoption of mobile Apps. The troublesome problems of data
sparsity [Shi and Ali 2012] and cold-start [Lin et al. 2013] could be relieved or solved by
using some specific features of mobile Apps (e.g., neighborhood among Apps and official
Twitter accounts). Some in-depth studies on privacy and security awareness [Zhu et al.
2014; Liu et al. 2015] have been given to avoid privacy invasion and other security con-
cerns. In the work of Yin et al. [2013], App recommendation can be regarded as a result
of the contest between satisfaction and temptation. Different from traditional items
(e.g., books, movies, and music) in recommender systems, Apps change and evolve,
which is reflected by an increment in their version numbers. Relevant work [Lin et al.
2014a] has been presented, which incorporates features distilled from version descrip-
tions into App recommendation. To achieve both memorization and generalization for
recommender systems, a Wide & Deep learning framework [Cheng et al. 2016] has been
proposed, which jointly trains a linear model and a nonlinear neural network model. It
is reported that the method has been deployed to production for Google Play. However,
previous works focus on mobile App recommendation and a few of them try to make
use of the data from other platforms (e.g., tablet and computer). In this article, we
captured App features on different platforms and fused the data on different platforms
together to improve the recommendation results on all platforms.

3. CROSS-PLATFORM APP RECOMMENDATION
In this section, we present our proposed STAR method. We begin by introducing the
problem formulation, followed by elaborating the two core components of our design—
the Cross-Platform Matrix factorization model (CPM) and the Platform-Aware App
modeling with Texts (PAT). Lastly, we give the inference algorithm of STAR and discuss
the new-user and new-App cold-start issues.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

37:8 D. Cao et al.

3.1. Problem Formulation

Let I, J, and S denote the number of users, Apps, and platforms, respectively. Each
input rating instance is then represented as a quadruple (i, j, s, r;j5), meaning that
user i has rated App j on the s platform with the score 7; is- Mathematically, we can

represent the data as a three-order tensor R € R’*/*S where the rating matrix of the
platform s corresponds to the slice R._ ;. It is worth pointing out that it is common that
an App has no ratings in a platform (new-item cold-start) and a user has no ratings
in a platform (new-user cold-start), which yields certain slices of the tensor are just a
zero matrix. This poses challenges to the traditional tensor factorization methods like
Tucker Decomposition and High-Order SVD [Rendle 2011].

In addition, each App is accompanied by some textual content such as the developer’s
description and users’ reviews, and we use dj; to denote the accompanying text of the
App j on the s platform. Let the set of observed rating instances (i.e., the nonzero
entries of tensor R) be R, which is an incomplete set of tensor entries as most ratings
are unknown (i.e., |R| <« IJS). The cross-platform recommendation problem is then
formulated as predicting the unknown ratings in the tensor R, where the predicted
scores of unknown ratings can be used to rank items for a user.

3.2. Cross-Platform Matrix Factorization Model

As a latent factor model, MF maps both users and items to a joint K-dimensional
latent space, such that user-item interactions are estimated as the inner products in
that space. While the standard MF model [Koren 2010] is designed for modeling user—
item ratings of a single (homogeneous) domain, it is a suboptimal choice for modeling
ratings of multiple (correlated) domains, since a direct application of the MF model
will treat the data of different domains independently. Inspired by the generalized
collective matrix factorization method [Singh and Gordon 2008], we apply a similar idea
that models a user’s cross-domain behaviors with a shared set of latent parameters.
Mathematically, we model each rating entry as

Fijs = 1+ by B) + by (js) +ul vy,)

where 1 is the global bias, which can be set as the average score of all ratings; b, (i)
denotes the bias of the user i; and b, (js) denotes the bias of the App j on the s
platform. Latent vectors w; and vj; are the key parameters of the Cross-Platform
Matrix Factorization Model (CPM) model, denoting the representation of the user i
and App Jj on the s platform, respectively.

Note that we have purposefully designed our model to share a user’s representation
across platforms while differentiating an App’s representation of different platforms.
The consideration is that a user’s interest in consuming Apps should remain largely
unchanged for different platforms, while an App’s properties can be changed dramat-
ically since developers usually design the App to adapt the platform’s properties. The
design of shared user representations leads to the side effect of alleviating the new-user
cold-start issue—even if a user has no ratings in one platform, his/her preference can
be learned from the data of other platforms. As we will show later in the experiments,
although simple, this shared representation of a user is an effective way to model the
user’s cross-platform behaviors and boost the prediction’s accuracy significantly.

Nevertheless, the platform-specific modeling of Apps in Equation (1) assumes that
the representations of an App on different platforms are independent of each other.
This is counterintuitive, since the same App developed by a company usually shares
the basic functionalities, regardless of the released platform (e.g., YouTube is mainly
for watching videos, while WhatsApp is mainly for people’s communication). One way
to get around the independence is to enforce an App’s representations on different

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

Cross-Platform App Recommendation by Jointly Modeling Ratings and Texts

map tennis racing calendar photo
track paddle graphics list effects
accurate realistic car sync picture
hiking serve game schedule color
google table control events editing
2ps pingpong amazing task art
running sport real data image
location matches awesome forms edit
distance court ipad imac filters
iphone bluetooth worth organized camera

37:9

Fig. 2. An example of five topics extracted by LDA, where each topic is represented by the top 10 words
ranked by their probabilities. The highlighted terms (in bold) reveal the platform information of the topic.

platforms to be similar to each other, such as via the pairwise regularizer [He et al.
2014b]. However, it is nontrivial to control the level of similarity for different Apps
and platforms. In what follows, we approach the problem by additionally modeling the
surrounding texts for platform-aware App representation learning.

3.3. PAT

As we have mentioned in the Introduction section, most App platforms have rich textual
information available. The two most universal types are the reviews (written by users)
and App description (written by developers). We find that both user reviews and App
description are well suited to complement the ratings for recommendation—reviews
justify the ratings by discussing the App’s properties from the perspective of users,
while the App description describes the App’s functionalities from the perspective of
developers. By properly modeling the rich evidence sources in the textual content, we
believe a better representation for an App can be learned, especially in differentiating
its common functionality and platform-specific properties.

Nevertheless, the inherent noises in user-generated reviews and the variability of
natural language pose great challenges for understanding the semantics in texts. One
viable solution is first extracting the aspects (i.e., nouns and noun phrases that describe
Apps’ properties) from the texts, and then feeding them into the recommendation
model [He et al. 2015]. However, this way requires a quality aspect extraction tool; while
the accuracy of aspect extraction tools is usually domain dependent, to our knowledge,
there does not exist such a tool specially developed for the App domain. Another solution
is projecting the text into the latent topic space, where each topic can be explained by
a few top words [McAuley and Leskovec 2013]. Figure 2 shows the top words of five
selected topics, which are learned by LDA on our dataset. As can be seen, the learned
topics are rather coherent and explainable—they not only reflect the properties of
Apps, but also reveal some information relevant to the platform. As such, to lessen
the dependency on the domain knowledge for identifying aspects, we resort to the
topic modeling approach to model the texts. Specifically, we apply LDA on the textual
content, obtaining a topic distribution 6 ;; as the semantic abstraction for the App’s text
djs.

JTo capture our intuition that the properties of an App are composed of its func-
tionalities (shared across platforms) and platform-aware specificities, we separate the
modeling for an App into two parts:

Vs =w; +Mbj,, (2

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

37:10 D. Cao et al.

Fig. 3. Graphical representation for the STAR model.

where w; is the latent vector for the App j that encodes its shared functionalities,
and M is the projection matrix that projects the nonnegative topic space into the
latent factor space, and we use the term M6, to encode the App properties that are
dependent with the platform. Let the number of latent factors be K and the number of
topics be T'; then the matrix M is of dimension K x T'. It is worth pointing out that the
linear transformation that bridges the discrepancy between the topic space and latent
factor space is very effective to translate the semantics in texts into the vectorized
representation of Apps, and yields significant improvement over the CPM model. While
other choices of nonlinear transformations do exist, such as the exponent function used
by McAuley and Leskovec [2013] and neural network-based functions [Dziugaite and
Roy 2015], we leave this exploration for future work.

3.4. The STAR Recommendation Method and Learning Algorithm

Our final STAR recommendation model combines the designs of CPM that models
users’ cross-platform ratings and PAT that enhances the App representation with
textual data, illustrated with the graph representation in Figure 3. Note that we have
intentionally ignored the bias terms in the figure to better highlight our key designs. A
rating is generated by the interaction between the user’s and the App’s representation
on the target platform, which is further decomposed into the App’s common features
and platform-specific features. Formally, we give the prediction model as follows:

fijs:/J/+bu(i)+bw(j)+uiT(Wj+M0J's), 3)

where u, b, (1), u;, w;, M, and 6 ;, have the same meanings as presented in Equations (1)
and (2); b, (js) is replaced by b,, (j), which denotes the bias of the j-th App.

To infer model parameters for a personalized recommendation model, we need to
design an objective function to optimize. There are two forms of objective functions
that have been widely adopted in the literature: (1) pointwise loss [Koren 2008] that
performs regression on known ratings, and (2) pairwise loss [Rendle et al. 2009] that
maximizes the margin between the known and unknown ratings. While the second
choice is mainly designed for learning from implicit feedback (where users’ explicit
preference on items are unknown), we opt for the first choice which has been shown to
be very effective in modeling users’ explicit ratings and also yields strong Top-K ranking
performance [Koren 2008]. The regression-based objective function is formulated as

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

Cross-Platform App Recommendation by Jointly Modeling Ratings and Texts 37:11

follows:

1
LO) =5 Y (rjs — i) + MO, 4)
(@.J,8)eR

where ® = {U, W, M, b,, b,,}, denoting all five groups of parameters to learn, and R
is the set of observed rating instances for training. To combat overfitting, we use the
standard L. regularization of all the parameters, weighted by the hyperparameter
A (distinct for each group of parameters in our implementation, i.e., Ay, Ay, Am, Ap for
U, W, M, b,, and b,,, respectively).

To minimize the objective function, a standard solution is applying squared loss on
model parameters [Koren et al. 2009]. Since the prediction model is in a linear form,
another solution is coordinate descent [He et al. 2016], also dubbed as Alternating
Least Squares (ALS) for optimizing the squared loss. While the ALS solution is more
difficult to obtain (requiring an exact optimization solution for each parameter in
each update), we resort to the Stochastic Gradient Descent (SGD) algorithm, which is
much easier to derive. Specifically, it randomly samples a training instance, and then
performs a gradient descent step for all related parameters regarding the loss of the
training instance. Let [(i, j, s) be the local loss for the instance (i, j, s); then we give the
derivative with respect to each group of parameters as follows:

oL@, j,s)
B—ui = — ejjs (WJ' + Mejs) + AU,
al .’ .7
(L—JS) —_ — eijsui +)\'wwj’
8Wj

Bl(z, j, S) T
W = — eijsuiﬂjs +)\.mM, (5)
ol j,s) .
———— = —ejjs + by, (1),

b, () ejjs + Apby (1)
L@, j.s) :
TN I:‘S)\' bu})

i, () e TP)

where e;;; denotes the prediction deviation, computed as e;;js = r;js—7ijs. In each gradient
step, a parameter takes an update toward the negative gradient, which is rescaled by
a step size (also termed as “learning rate”). As a constant learning rate may result in
fluctuations in the later iterations (close to the local minimum), we employ an adaptive
strategy for the learning rate. We monitor the training loss of each iteration; when the
loss increases, we punish the learning rate by a ratio of 0.5. Through this way, the SGD
algorithm can steadily converge to a local minimum.

3.5. New-User and New-App Cold-Start Problems

We concern ourselves with the cold-start scenario where a user or an App is new to a
platform (i.e., has no rating history), while the user or App does have historical data on
other platforms.? Figure 4 shows two illustrative examples of the cold-start scenarios.

Since the data from multiple platforms have been jointly modeled in STAR, the users
(and Apps) of the cold-start platform are in the same latent space with the users (and
Apps) of other non-cold-start platforms. This is a key advantage of our joint modeling

2Note that as long as the user or App has historical data on at least one platform, our solution for alleviating
cold-start will work. However, similar to other collaborative filtering methods, our method will also fail for
the pure cold-start problems where a user or App does not have any rating history.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

37:12 D. Cao et al.

; ;
0 8== 0 8 =
. —_— —_—
i Social enhanced Gl i Non-free N
iDhone | Al AppX iDhone Al AppX
’ N, ra ~
a8 = g
— ——
Alex Nice looking ey Easy to operate
ivad Ay ivaa B X
|:| Q ? ? -
> |:I >
\ iMac Al AppZ . iMac i Cark AppX
(a) new-user cold-start. (b) new-App cold-start.

Fig. 4. Illustration of the new-user and new-App cold-start problems. The question mark “?” stands for the
ratings that we wish to predict, and the label “new” means the user or App is new to the platform and has
no rating history on it.

approach and forms the basis for addressing the cold-start problems. Specifically, for
the new-user cold-start situation, we can directly use the latent vector u; learned from
other platforms as the user’s representation for the cold-start platform. In the case
of the new-App cold-start scenario, when the textual description is available, we can
follow the same procedure (as in Equation (2)) to obtain the App’s representation. When
the textual information is absent, we can use the shared latent vector w; as the App’s
representation on the cold-start platform. In this case, STAR will forgo incorporating
the platform-aware features, and the prediction on the item will be solely based on its
shared properties on other platforms.

4. DATA PREPARATION AND STATISTICS

In this section, we detail how we prepare data for empirical evaluation. In addition, we
perform some basic statistical analyses to better understand the data.

4.1. Data Collection

The data sources used for evaluating our solution include both numerical ratings and
textual content:

(1) Numerical ratings and their affiliated textual reviews. We first crawled all Apps’
names and IDs from the iTunes Store® and Mac App Store* in November 2015.
In total, we obtained 2, 076, 240 iPhone and iPad Apps, and 49, 298 iMac Apps.
We then retrieved the reviews for all Apps. A review entry contained a numerical
rating (of scale 1-5), reviewing timestamp, title, and content.

(2) Apps’ textual descriptions. For each App, we also crawled its textual description
from the iTunes Store and Mac App Store. An App’s description contained the
App’s title, textual description, genre, developer’s ID, and version change logs.

4.2. Data Processing

4.2.1. Datasets Construction. We constructed two datasets—one is of two platforms and
the other is of three platforms—to evaluate our method. The first dataset is constructed

Shttps://itunes.apple.com/us/genre/ios/id36?mt=8.
4https://itunes.apple.com/us/genre/mac/id39?mt=12.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

https://itunes.apple.com/us/genre/ios/id36?mt$=$8
https://itunes.apple.com/us/genre/mac/id39?mt$=$12

Cross-Platform App Recommendation by Jointly Modeling Ratings and Texts

Table I. Some Statistics of the iphone-iPad Dataset

Amount | Min. #ratings | Max. #ratings | Avg. #ratings
User 112,031 2 219 2.86
App-iPhone 2,704 1 15, 946 62.31
App-iPad 2,704 1 11, 846 56.23
Table Il. Some Statistics of the iphone-iPad-iMac Dataset
Amount | Min. #ratings | Max. #ratings | Avg. #ratings
User 121,905 2 21 2.21
App-iPhone 201 1 64,482 1,117.37
App-iPad 201 1 5,572 206.62
App-iMac 201 1 439 13.97

37:13

based on the platforms of iPhone and iPad. The name of an App on iPad usually contains
the word of “HD,” which represents High Definition. So we first chose the Apps whose
names contain “HD,” and then found their corresponding versions on iPhone. We found
that 3, 800 pairs of Apps exist on both of these platforms. Since most users use the
same Apple account to download Apps on both iPhone and iPad, we could identify the
same users by matching user IDs on the two different platforms. We further processed
the dataset by retaining users who rated at least once on both of these platforms.
Ultimately, we obtained 112, 024 users, 2, 704 pairs of Apps, and 320, 535 ratings
(168, 489 ratings on iPhone, and 152, 046 ratings on iPad). The user-App ratings matrix
has a sparsity of 99.95%. The time span of ratings ranges from September 13th, 2008
to October 24th, 2015. Detailed statistics of the dataset are provided in Table 1.

The second dataset is constructed based on the platforms of iPhone, iPad, and iMac.
Since the Apps in iTunes Store and Mac App Store share the same name, they can
be easily linked. We used the same method mentioned in the first dataset to link the
Apps on the platforms of iPhone and iPad. Finally, we obtained 260 triples of Apps
that existed on all three platforms. We selected users who had at least two ratings
in the 260 triples, and finally obtained 121, 905 users (102, 789 users rated on one
platform, 18, 960 users rated on two platforms, and 156 users rated on there platforms),
201 triples of Apps, and 268, 929 ratings (224, 591 ratings on iPhone, 41, 530 ratings
on iPad, and 2, 808 ratings on iMac). The user-App ratings matrix has a sparsity of
99.63%. The time span of ratings ranges from January 27th, 2008 to November 16th,
2015. Detailed statistics of the dataset are provided in Table II.

4.2.2. Topic Modeling on Textual Content. We first integrated all reviews of an App and
treated it as a document. We also treated the description of an App as a document.
Before running the LDA method [Blei et al. 2003] to extract topics, we performed a
modest filtering on texts to reduce possible noises. Specifically, we first removed the
non-English words and stop words, and normalized verbs and adjectives with the help
of the porter stemmer [Zhu et al. 2014]. To run LDA, we set the priors for topic—word
and document—topic distributions as 50/ T (where T' denotes the number of topics) and
0.1, respectively, as suggested by Heinrich [2008]. Figure 2 shows an example of topics
extracted by LDA from our datasets.

4.3. Statistical Analysis

We performed some statistical analyses to better understand the datasets. Since the
statistics of the iPhone-iPad-iMac dataset show very similar trends with the iPhone-
iPad dataset, we focus on briefly discussing Figure 5. From Figure 5(a), we can see
the rating distribution is strongly biased toward the high-score ratings (over 80% of
the ratings are higher than 3). It might be because users tend to rate Apps they

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

37:14 D. Cao et al.

10f
2000 2
+ B
2 1500 " £ .
g 2 “ & R
e, 2 +
5 5
s 5 -, 5 i
51000 %] o
5 , ?ﬁ 5 10 Y
o S
S . *
P :»‘?
R v
4
0 L 10° 10
0 10

30 40 50 20 30 40 50 10° 10! 10? 10° 10* 10° 10' 10?
Rating Levels Topic Index Number of Ratings Number of Ratings

3

Number of Apps
3

3,

Number of Ratings
° 5 - & S
;t
Num f Al
3
s

B

(a) Rating level distribution (b) Topic distribution (c) App distribution (d) User distribution

Fig. 5. Data distributions of the iPhone-iPad dataset.

Number of Ratings
[2,
Number of Apps
- g g
Number of Apps
4
t ¥
Foret
! it
Numbe f U
3, 3

10° = " 10
20 30 4.0 10 20 30 40 50 10° 10' 10° 10° 10* 10° 10° 10!
Rating Levels Topic Index Number of Ratings Number of Ratings

B
B

(a) Rating level distribution (b) Topic distribution (c) App distribution (d) User distribution

Fig. 6. Data distributions of the iPhone-iPad-iMac dataset.

like and avoid the ones they dislike. This similar Not Missing At Random (NMAR)
phenomenon has been previously observed in other domains, such as music [Marlin
et al. 2007]. Figure 5(b) shows the topic distribution over Apps. For each App, we select
its prominent topics and show the distribution of the top 50 most popular topics in
the figure. As can be seen, it exhibits a highly skewed distribution of topics, where
the top 10 topics take over 80% of Apps. We hypothesize this may be caused by the
focused categories of the Apps, where most Apps on our datasets are about games and
entertainment. Lastly, we show the App distribution and user distribution with respect
to the number of ratings in Figures 5(c) and 5(d) (log-log plot), respectively. As we can
see, both users and Apps show a long-tail distribution—most users and Apps only have
very few ratings, and only a small proportion of users and Apps have many ratings.
This is consistent with most recommendation benchmarks, such as the Netflix [Koren
2008] and Yelp [He et al. 2015] datasets, and highlights the sparsity challenge faced by
personalized recommender systems. Similar data distributions have revealled on the
iPhone-iPad-iMac dataset as shown in Figure 6.

5. EXPERIMENTS

In this section, we conducted extensive experiments on our collected datasets aiming
to answer the following five research questions:

—RQ1. How does our designed STAR approach perform as compared with other state-
of-the-art recommendation algorithms?

—RQ2. How does STAR perform in handling the new-user and new-App cold-start
problems?

—RQ3. Do users exhibit distinct preferences for different platforms of an App? Is STAR
able to target the exact platform of an App that the user has rated?

—RQ4. How do the common features and specific features of Apps contribute to the
overall effectiveness of STAR?

—RQ5. In addition to rating prediction that is prevalent to a recommendation algo-
rithm, how does STAR perform in the more practical top-N recommendation?

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

Cross-Platform App Recommendation by Jointly Modeling Ratings and Texts 37:15

To empirically answer these questions, we carried out experiments on the iPhone-
iPad and iPhone-iPad-iMac datasets, respectively. It is worth emphasizing that the
experimental results regarding RQ1, RQ4, and RQ5 reported in this article were based
on fivefold cross-validation. For the remaining two questions, due to their intrinsic
requirements, it is hard to perform fivefold cross-validation. Instead, we repeated the
experiments five times and reported their average results.

5.1. Experimental Settings

5.1.1. Evaluation Metrics. Rating prediction has become the de facto to evaluate an
explicit feedback-based recommender system. To measure the prediction performance,
we adopted the commonly used error metric, Mean Absolute Error (MAE), which is
calculated as

1
AE = [D |Ris = rijs

@, j,8)eT

’ (6)

where |7| is the number of ratings in the testing set 7, 7;j; is the predicted rating of
the user i on the App j over the s?* platform, and r; js is the ground truth. In addition,
we employed the Root Mean Squared Error (RMSE) as another error metric, defined
as

1 2
RMSE = —_— Z (fijs — rijs) . (7)
|T| ,j.5)eT

From the formal definition, we can see that the smaller MAE and RMSE values nor-
mally indicate better performance for rating predictions. MAE assigns equal weight to
the data, whereas RMSE emphasizes the extremes.

On the other hand, the top-N recommendation task is of more practical value, as most
online recommendation systems only show a short list of items to users. To evaluate
the performance of top-N recommendation, we resorted to the widely used accuracy
metric, recall, which is defined as

ny
Recall@M N, (8)
where n, and N, are the number of Apps the user likes in the top M ranked list and the
total number of Apps the user likes, respectively. We calculate the recall for every user
in the testing set, and report the average score. In addition, we utilized the Normalized
Discounted Cumulative Gain (NDCG) as our another ranking-aware metric, which is
based on Discounted Cumulative Gain (DCG),

DCG@M = f: 2 1 ©)
- “logy i+ 1)

where rel; is the graded relevance of the result at position ;. IDCG is the ideal DCG for
a given set of Apps, and then the NDCG is computed as

DCG@M

IDCGeM’
We can see that large values of Recall and NDCG indicate better performance for
top-N recommendation. Recall measures the proportion of relevant items that the
algorithm successfully identified in the top-N ranked list, while NDCG accounts for

the position of correct hits, which assigns higher importance to results at top ranks,
scoring successively lower ranks with marginal fractional utility.

NDCG@M = (10)

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

37:16 D. Cao et al.

5.1.2. Baseline Methods. Here we briefly introduce the baseline algorithms that we
intend to compare with. The baseline algorithms were chosen from the collaborative
filtering method in Section 2.1, the semantics enhanced recommendation approach in
Section 2.2, the context-aware recommender systems technique in Section 2.3, and the
cross-domain recommender systems method in Section 2.4, respectively.

—SVD++ [Koren 2008]. As a representative MF method, SVD++ considers the implicit
information (e.g., clicks and purchase records), which has been proven to be superior
to traditional MF methods. In our experiments, we regarded the historical ratings
as implicit feedbacks and incorporated them in the SVD++ approach. We trained the
model on different platforms separately. Hence, the same user on different platforms
was considered as different users. SVD++ was used in the experiment of overall
performance comparisons.

—RMR [Ling et al. 2014]. As a typical semantics enhanced technique, RMR has been
proven to be superior to CTR and HFT. The document setting in RMR is the same
as that in our STAR model, which integrates all user reviews of an App into one
document. We trained the model on different platforms at the same time, and treated
the same user on different platforms as one user. Therefore, RMR was used in the
experiment of overall performance comparisons and new-user cold-start problem.
Since RMR is based on HFT, we used the code released by the authors of HFT.

—CTR [Wang and Blei 2011]. Similar to RMR, CTR is also one of the semantics
enhanced methods, and it is capable of handling out-of-matrix cold-start problem,
which is the same as our new-App cold-start problem. We treated the same user
on different platform as one user. Since RMR cannot handle new-App cold-start
problem, we employed CTR as a semantics enhanced baseline in our experiment to
handle this scenario.

—FM [Rendle et al. 2011]. As a context-aware recommendation algorithm, FM outper-
forms other context-aware competitors in prediction quality and runtime. We utilized
the released codes to implement this method.® In our experiment, the platform was
considered as a context and the same user on different platforms was seen as one
user. FM was used in the experiment of overall performance comparisons, new-user
cold-start problem, and new-App cold-start problem.

—CMF [Singh and Gordon 2008]. CMF is one of the most reputable approaches in
cross-domain recommender systems. It shares parameters among factors on different
matrices simultaneously when a user or item participates in multiple relations. In
our experiment, the user participates in multiple platforms and can be associated by
identifying the same user ID on different platforms. CMF was used in the experiment
of overall performance comparisons, new-user cold-start problem, and new-App cold-
start problem. It is worth noting that the App on different platforms was seen as the
same App in the new-App cold-start problem.

—WMF [Hu et al. 2008]. WMF is a collaborative filtering method for implicit feedback
datasets that is tailored for top-N recommendation. It transforms user’s implicit feed-
back into two magnitudes—preference and confidence. Preference measures whether
the user likes or dislikes the item. In our experiment, a rating of 3 and above on the 5-
point Likert scale was translated to “like,” and a rating of 2 and below was translated
to “dislike,” which are consistent with the experiment setting in Lin et al. [2014a].
Confidence measures the level of users’ preferences on the item, which is reflected by
the numerical rating (the implementation is a monotone function with the rating).
WMF regards all missing data as negative samples and utilizes ALS to solve this

Shttp://cseweb.ucsd.edu/~jmcauley/.
Shttp://www.libfm.org/.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

http://cseweb.ucsd.edu/protect $
elax sim $jmcauley/
http://www.libfm.org/

Cross-Platform App Recommendation by Jointly Modeling Ratings and Texts 37:17

model, which is time-consuming and memory-consuming for large-scale data. Thus,
we resort to sampling various numbers of negative samples for each user instead
of using full missing data, and then obtain the optimal results to approximate the
result of WMF. Before diving into the algorithm, we rescaled the absolute ratings
using their average cumulative proportion [Hsieh et al. 2016] to alleviate the rating
bias.

—Popular. Items are ranked by their popularity judged by the number of ratings. It is
a nonpersonalized method that benchmarks the performance of other personalized
methods . While it seems simple and heuristic, it can be a competitive baseline for
the top-N task, as users tend to consume popular items [Cremonesi et al. 2010].

5.2. Parameter Tuning and Convergence Analysis

For each method mentioned in Section 5.1.2, the involved parameters were carefully
tuned, and the procedures to tune the parameters are analogous to ensure fair com-
parison. In addition, the parameters with the best performance were used to report
the final comparison results. Take the tuning procedure of our proposed STAR model
as an example.

There are six important parameters in our STAR model: (1) the number of topics T
in topic modeling; (2) the dimensionality of latent factors K in matrix factorization; and
(3) the parameters Ay, A, Ap, and A, that balance the terms in our proposed model. In
particular, in one of the fivefold, we selected the optimal parameters by grid search with
a small but adaptive step size on the training set. Here we revealed the tuning results
in the overall performance comparisons, and observed that when T' = 200, K = 10,
A = 0.2, 4, = 6, 4, = 0.002, and X,, = 0.005 for iPhone-iPad dataset, our model
achieved the best performance regarding RMSE. Regarding iPhone-iPad-iMac dataset,
the optimal parameter setting is 7' = 200, K = 10, A, = 0.2, A,, = 8, A, = 0.001, and
Am = 0.0008. We then investigated the sensitivity of our STAR to these parameters by
varying one and fixing the others. The parameter tuning results for the iPhone-iPad-
iMac dataset is almost the same as that of the iPhone-iPad dataset. To save the space,
we only illustrated the tuning results of the iPhone-iPad dataset here.

We first fixed K = 10, A, = 0.2, A, = 6, A, = 0.002, 1,, = 0.005, and varied T'. As
shown in Figure 7(a), the value of RMSE changes in a small range, when varying T
from 100 to 1, 000, and reaches its minimum value when 7' = 200. The slight change
demonstrates that our model is nonsensitive to the parameter 7.

We then fixed T' = 200, A, = 0.2, 1, = 6, A, = 0.002, A,, = 0.005, and varied K. As
shown in Figure 7(b), RMSE decreases first and then increases along the increasing
of K. It reaches its minimum when K = 10. Our finding is different from traditional
latent factor methods, which are inclined to use more factors [Koren et al. 2009]. This is
mainly because latent factors in matrix factorization and topic distributions on textual
content are mutually interrelated in our model. And users might only mention a few of
all possible factors in textual content, which leads to limited factors being considered
in matrix factorization.

Using a similar method to adjust other parameters, we can see from Figures 7(c)-7(f)
that the value of RMSE changes in a small range, when varying A, A, Ap, and 1, in
ranges of [0, 1], [1, 10], [0, 0.01], and [0.001, 0.01], respectively.

At last, we recorded the value of RMSE along with each iteration using the aforemen-
tioned optimal parameter setting. The initial value of learning rate was set to 0.01. If
the value of loss function increases, we divided the learning rate by 2. After five times
division, we finished the iteration process. Figure 8 shows the convergence study with
the increasing number of iterations. It shows that our algorithm can converge within
20 iterations.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

37:18

1.1 1.1
108 [~==iPhone-iPad - * -iPhone-iPad-iMac]| 108 [~==iPhone-iPad - * -iPhone-iPad-iMac]|
1.04 | 1.04 |
i i
w102 ; w102 ;
2 4 ! 2 1 |
o 1 o 1
0.98 ! 0.98 !
0.96 0.96
i i
0.94 po o~ | S o _e-e--3 0.94 R S e N 1
R R S (O - S~e” S~
0.92 + 0.92 H
i i
0.9 L 09 H
0 100 200 300 400 500 600 700 800 900 1000 5 10 15 20 25 30 35 40
T K

(a) Parameter tuning of T’

(b) Parameter tuning of K

D. Cao et al.
1.1
108 [~==iPhone-iPad - * -iPhone-iPad-iMac]|
1.04
w102
%)
2 4
z |
0.98 |
'
0.96 !
0.94 P -~ 1
0.2 Tt e
0.9
0 01 02 03 04 05 06 07 0.8 09 1

A

u

(¢) Parameter tuning of A\,

1.12 1.

11 [~e—iPhone-iPad - » - iPhone-iPad-iMac] 108 [~+=iPhone-iPad - » -iPhone-iPad-iMac]
1.08 L e S
1.06 ' 1.04 i

| i
W 104 i W 1:02 i
§1.02 !) !
2 ; 2 1 i
gl ! “o98 :
0.98 i ’ |
0.96 i 0.96 i
| |

0.94%, 0 P N e 094 -t - Eg [P—p—
092 R | v 0%2f | |
09 H H 0gb—1 1

0 1 2 3 4 5 6 7 8 9 10 0 0002 0004 0006 0008 0.1

(d) Parameter tuning of A,

(e) Parameter tuning of \,

14
1.08 [~e=iPhone-iPad - » -iPhone-iPad-iMac]
B e S
r
1.04 !
1.02 |
A |
2 ;
T 0.98 i
|
0.96
|
R SRS NS S Ve
P
0.92 v !
0.9 : 1
10* 10° 102
A

m

(f) Parameter tuning of A,

Fig. 7. Parameter tuning in terms of RMSE over two datasets.

1.14
1.12
1.1
1.08
1.06
w 1.04

2102
o

1t

0.98
0.96
0.94
0.92

0.9
0

o

[—e=iPhone-iPad - * -iPhone-iPad-iMac] |

®
"va\

L L L L

**%oee 0000000000000

5 10 15 20
iterations

25

30

Fig. 8. Convergence analysis in terms of RMSE over two datasets.

5.3. Overall Performance Comparisons (RQ1)

To demonstrate the overall effectiveness of our proposed STAR model, as discussed in
Section 5.1.2, we compared the STAR with several state-of-the-art recommendation
approaches: (1) SVD++, (2) RMR, (3) FM,and (4) CMF.

Results on the iPhone-iPad dataset are shown in Table III. We made the following
observations: (1) Our STAR achieves the MAE of 0.7560 and the RMSE of 1.0595, re-
spectively. It shows substantial improvements over SVD++, RMR, FM, CMF of 3.36%,
1.54%, 5.52%, 1.83% in MAE, and 5.55%, 1.13%, 2.68%, 3.48% in RMSE, respectively.
We also conducted the paired two-sample t-test based on the fivefold cross-validation
results. All the p-values between our model and each of the baselines are much smaller

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

Cross-Platform App Recommendation by Jointly Modeling Ratings and Texts

Table Ill. Performance Comparison of Various Methods on the iphone-iPad
Dataset Regarding RMSE and MAE

Dataset Regarding RMS

E and MAE

Methods MAE RMSE p-value(MAE) | p-value(RMSE)
SVD++ 0.7823 +£0.003 | 1.1218 4+ 0.004 2.44e-10 1.02¢-10
RMR 0.7679 £0.002 | 1.0716 £+ 0.003 5.83e-09 7.16e-08
FM 0.8002 £0.003 | 1.0887 £ 0.003 3.05e-11 2.06e-10
CMF 0.7701 £ 0.003 | 1.0977 £+ 0.003 2.96e-09 7.21e-10
STAR 0.7560 = 0.003 | 1.0595 + 0.003 - -
Table IV. Performance Comparison of Various Methods on the iphone-iPad-iMac

Methods MAE RMSE p-value(MAE) | p-value(RMSE)
SVD++ | 0.6040 £0.002 | 0.9389 + 0.002 2.88¢-09 5.79e-11
RMR 0.5985 +0.003 | 0.9333 & 0.004 1.77¢-08 7.61e-07
FM 0.6117 +£0.003 | 0.9352 £ 0.003 5.55¢e-10 2.19¢-08
CMF 0.6035 £+ 0.003 | 0.9371+0.003 3.30e-09 6.60e-10
STAR 0.5889 £0.002 | 0.9261 = 0.003 — -

37:19

than 0.05, which indicates that the improvements are statistically significant. This is
mainly because STAR not only utilizes the dual-heterogeneous data, but also captures
common features and distinguishes specific features of Apps on different platforms.
(2) The experimental results of CMF are superior to SVD++ in both MAE and RMSE.
Because in the construction of the dataset, we only selected those users who have rated
two platforms. CMF merges the users across different platforms by identifying the
same user IDs, and it thus would increase the density of the data and improve the per-
formance. (3) FM and CMF achieve suboptimal performance, as compared with RMR,
since they do not leverage the extra textual content, which justifies the importance and
necessity of incorporating the textual information.

Results on the iPhone-iPad-iMac dataset are summarized in Table IV. We can observe
the following: (1) Our STAR model obtains the MAE of 0.5889 and the RMSE of 0.9261,
which gains improvements over SVD++, RMR, FM, CMF at 2.50%, 1.60%, 3.73%, 2.42%
in MAE, and 1.36%, 0.77%, 0.97%, 1.17% in RMSE, respectively. The results of p-values
confirm the statistically significant improvements. (2) The improvement of CMF over
SVD++ is not sufficiently obvious. The reason is that we selected the users who have
at least two ratings, while only 15.68% of the users have rating records at least on two
platforms. Thus, the performance of CMF is not very significant.

5.4. Handling Cold-Start Problems (RQ2)

5.4.1. New-User Cold-Start Problem. As illustrated in Section 3.5 and Figure 4, the new-
user cold-start problem refers to the existing user appearing on a new platform. We
conducted the experiment on the iPhone-iPad-iMac dataset. There exist 19, 116 users
who have ratings on at least two platforms, which is 15.68% of the whole 121, 905 users.
For each of these users, we first randomly selected one platform from those whereby
he/she has rating records, and removed the ratings on this platform. Thereafter, we used
the remaining ratings for training, and the removed ratings for testing. We repeated
this experimental settings five times and reported the average results. Since SVD++
regards the same user on different platforms as different users, it cannot handle new-
user cold-start problem. We compared our STAR method with these three approaches:
(1) RMR, (2) FM, and (3) CMF.

The results are displayed in Table V. From this table, we observed that STAR
achieves the MAE of 0.6849 and the RMSE of 1.0344, which gains improvements over
RMR, FM, CMF at 2.20%, 5.18%, 2.73% in MAE, and 2.34%, 3.24%, 4.07% in RMSE,

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

37:20

Table V. Performance Comparison of Various Methods in Handling New-User
Cold-Start Problem

D. Cao et al.

Methods MAE RMSE p-value(MAE) | p-value(RMSE)
RMR 0.7003 £ 0.003 | 1.0592 £ 0.002 2.67e-09 3.97e-10
FM 0.7223 +£0.003 | 1.0690 £ 0.003 7.67e-11 1.05¢-10
CMF 0.7041 +0.004 | 1.0783 £0.003 1.10e-09 4.04e-11
STAR 0.6849 +0.003 | 1.0344 +0.003 - -

Table VI. Performance Comparison of Various Methods in Handling New-App
Cold-Start Problem

Methods MAE RMSE p-value(MAE) | p-value(RMSE)
CTR 0.8746 +£0.003 | 1.2310 £+ 0.003 6.76e-10 6.98¢-10
FM 0.9017 £+ 0.003 1.2452 +0.004 2.64e-11 1.76e-11
CMF 0.8736 +£0.002 | 1.2471+0.002 8.17¢-10 2.48e-11
STAR 0.8529 +0.002 | 1.2063 + 0.003 - -

respectively. The paired two-sample t-tests also support the conclusion of significant
improvements. These experimental results reflect that user interests are almost in-
variant across different platforms, and it is thus reasonable to leverage a user’s latent
factor on other platforms to help the rating prediction on a new platform.

5.4.2. New-App Cold-Start Problem. The new-App cold-start problem refers to such cases
that developers release an existing App on a new platform and the App has no ratings
on the new platform. We carried out experiments on the iPhone-iPad-iMac dataset.
The textual content used here is App descriptions. Each App exists on these three
platforms. For each App, we first randomly selected its one platform and removed the
ratings on this platform. The remaining ratings of each App were used for training, and
the removed ratings were used for testing. We repeated this experimental setting five
times and reported the average results. Both RMR and CTR are semantics enhanced
techniques, while CTR is a method to handle out-of-matrix cold-start problem, which is
the same in our scenario. So we used CTR to solve our new-App cold-start problem. FM
treats the platform as a context and the context information of new App can be obtained
from other Apps. CMF regards the App on all platforms as a single one and there is
enough information about the App on the known platforms. In brief, we compared our
STAR method with (1) CTR, (2) FM, and (3) CMF.

The comparison results are summarized in Table VI. The results show the following:
(1) Our STAR obtains the MAE of 0.8529 and the RMSE of 1.2063, which gains im-
provements over CTR, FM, CMF at 2.48%, 5.41%, 2.37% in MAE, and 2.01%, 3.12%,
3.27% in RMSE, respectively. The improvements are statistically significant. (2) CTR
outperforms FM and CMF, since textual content provides sufficient information about
the App in the new-App cold-start scenario.

5.5. User Preference on App-Platform (RQ3)

In our datasets, we only know user rated an App on a specific platform. However,
we are not sure whether the user likes the App on the platform he/she has rated as
compared with other platforms, or it is just the first platform that the user encounters
the App. To answer this question, we explored the prediction of user’s rating of an
App on the current platform (i.e., the platform that was rated on by the target user),
but also the prediction of the ratings on other platforms. If the rating prediction of
the current platform is statistically higher than other platforms, it demonstrates the
current platform is favored by the users.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

Cross-Platform App Recommendation by Jointly Modeling Ratings and Texts 37:21

4.7

‘ Il Current Platform [_]Other Platforms‘

> » >
EN w» o
: :

Rating Predictions

N
w

42 IA
iPhone-iPad iPhone-iPad-iMac

Dataset

Fig. 9. Comparison of current platform and other platforms.

Table VII. Importance Comparisons of Common Features and Specific Features
on the iPhone-iPad Dataset

Methods MAE RMSE p-value(MAE) | p-value(RMSE)
¢STAR | 0.7771+0.004 | 1.0824 +0.003 7.57e-10 8.72¢-09
sSTAR | 0.7842 +0.003 | 1.1042 +0.002 2.37e-10 5.39¢-13
STAR 0.7560 + 0.003 | 1.0595 + 0.003 - -

For each App that each target user has consumed, we predicted the ratings for both
current platform and other platforms and compute the average results. Figure 9 shows
the average score of rating prediction results of our STAR model for both current
platform and other platforms of all users on the two datasets. We make the following
observations: (1) Our method favors the current platform better, which indicates that
our STAR model is effective toward the platform of an App that maximizes its chances
of being acquired by the target user. In other words, our model is able to recommend
platform-aware Apps. (2) The gap between rating predictions of the current platform
and other platforms on the iPhone-iPad dataset is larger than that of iPhone-iPad-iMac
dataset. This is due to the dataset construction strategy. In particular, in the dataset
construction process, we selected users who rated on two platforms on the iPhone-iPad
dataset; in contrast, we selected users who rated at least twice on the iPhone-iPad-
iMac dataset (according to our statistics, only 15.68% of the users rated on two or more
platforms). Obviously, users’ preference on the platform on the iPhone-iPad dataset is
easier to be captured compared with that of the iPhone-iPad-iMac dataset.

5.6. Justification of Common Features and Specific Features (RQ4)

In the overall performance comparison, STAR outperforms CMF in both datasets,
which demonstrates the importance of capturing common features and specific features
of Apps across different platforms. To further understand the influence of common
features and specific features of App latent factors, we performed experiments by
removing common features w; and specific features M, in Equation (4), separately.
For convenience, we used cSTAR to represent “STAR with common features only,” and
sSTAR to represent “STAR with specific features only.”

Tables VII and VIII show the results of importance comparisons of common fea-
tures and specific features. We make the following observations: (1) STAR outperforms
¢STAR, sSTAR 0f 2.71%, 3.60% in MAE, and 2.12%, 4.05% in RMSE on the iPhone-iPad
dataset, respectively. At the same time, STAR’s improvements over cSTAR, sSTAR on

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

37:22

Table VIII. Importance Comparisons of Common Features and Specific
Features on the iphone-iPad-iMac Dataset

D. Cao et al.

Methods MAE RMSE p-value(MAE) | p-value(RMSE)
c¢STAR 0.6092 +£0.003 | 0.9364 £ 0.003 8.83e-10 2.13e-07
sSTAR 0.6299 £0.003 | 0.9471 +0.002 5.31e-11 1.24e-09
STAR 0.5889 +0.002 | 0.9261 + 0.003 - -
T 0 0 0
osf pr 0.2 777777 PR P S A PSS S L i
804 Sig 2 204
9o 4 9 %)0.4 s o3
g S o1 8 8
0.2 -+ Popular z - Popular © -+ Popular Z0.2f - Popular
! + WMF 0.05 + WMF 0.2] + WMF + WMF
011 -+-CMF-WMF -+-CMF-WMF -+-CMF-WMF || 0.1 -+-CMF-WMF
-+ STAR-WMF] o -+ STAR-WMF] -+ STAR-WMF] -+ STAR-WMF]

2 4 6 8 10
Number of negative samples per user

(d) iPhone-iPad-Mac

2 4 [8 10
Number of negative samples per user

(c) iPhone-iPad-iMac

2 4 6 10
Number of negative samples per user

(b) iPhone-iPad

2 4 6 8 10
Number of negative samples per user

(a) iPhone-iPad

Fig. 10. Top-N results of various numbers of negative samples for each user on the iPhone-iPad and iPhone-
iPad-iMac datasets.

the iPhone-iPad-iMac dataset are 3.33%, 6.51% in MAE, and 1.10%, 2.22% in RMSE.
The results illustrate that the combination of common features and specific features
significantly improved the performance. (2) ¢STAR outperforms sSTAR of 0.91% in
MAE and 1.97% on the iPhone-iPad dataset, 3.29% in MAE and 1.13% in RMSE on
the iPhone-iPad-iMac dataset. Obviously, common features have greater impacts than
specific features in our framework.

5.7. Evaluation of Top-N Recommendation (RQ5)

The optimization for recommender systems has long been divided into rating prediction
and top-N recommendation, which leads to two branches of evaluation metrics—error-
based (e.g., MAE and RMSE) and accuracy-based (e.g., recall and NDCG). According
to the conclusion drawn from Cremonesi et al. [2010], there is no monotonic relation
between error metrics and accuracy metrics. This means that even though a method
achieves a lower error rate for rating prediction, it does not necessarily mean it will
outperform other algorithms for the top-N recommendation. One of the key insights
is in the modeling of missing data, which is crucial for a model to obtain good perfor-
mance in ranking unconsumed items for users [He et al. 2016]. Since rating prediction
models [Hu et al. 2008; Koren 2010] account for observed entries only and forgo the
missing data, they may be suboptimal for the top-N task. As such, we resorted to mak-
ing some adjustments upon STAR to apply it to the top-N task. WMF [Hu et al. 2008]
is a top-N recommendation algorithm using only implicit feedback datasets, which is
based on collaborative filtering. We incorporated the core part of STAR (Equation (2))
into WMF, and denoted it as STAR-WMF. Meanwhile, CMF is also suitable for being
embedded into WMF, which just ties the same user on different platforms together, and
we denoted it as CMF-WMF. In addtion, nonpersonalized algorithm, Popular, is added
into the performance comparison, which ranks items by the number of ratings an item
has. As discussed in Section 5.1.2, WMF is time-consuming and memory-consuming
for large-scale data, which is caused by accounting for all missing data. Instead, we
sampled various numbers of missing data as negative samples for each user to approxi-
mate the result of WMF. And we found the performance of each method becomes stable
when the number of negative samples increases. Figure 10 reveals the performance of
algorithms with various numbers of negative samples for each user on the iPhone-iPad

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

Cross-Platform App Recommendation by Jointly Modeling Ratings and Texts

Table IX. Evaluation of Top-N Recommendation on the iphone-iPad Dataset

Methods Recall@100 NDCG®@100 p-value(Recall) | p-value(NDCG)
Popular 0.5227 £0.000 | 0.1757 & 0.000 1.58e-11 1.48¢-11
WMF 0.5695 +0.003 | 0.2158 £ 0.002 1.02¢-10 2.12e-09
CMF-WMF | 0.5696 & 0.002 | 0.2241 4 0.003 2.74e-08 3.66e-08
STAR-WMF | 0.5782 4+ 0.002 | 0.2321 + 0.003 - -

Table X. Evaluation of Top-N

Recommendation on the iphone-iPad-iMac Dataset

Methods Recall@10 NDCG@10 p-value(Recall) | p-value(NDCG)
Popular 0.6133 £ 0.000 0.5005 £ 0.000 6.21e-12 4.42¢-11
WMF 0.6686 +0.002 | 0.5321+0.003 3.12¢-09 9.19e-09
CMF-WMF | 0.6745+0.003 | 0.5379 4 0.004 2.38¢-08 1.63e-07
STAR-WMF | 0.6834 +0.003 | 0.5434 + 0.003 - -

37:23

and iPhone-iPad-iMac datasets. We selected the best results for each algorithm on each
dataset to report the final comparisons.

Final results on the iPhone-iPad and iPhone-iPad-iMac datasets are shown in
Tables IX and X, respectively. From these tables, we can observe the following:
(1) STAR-WMF achieves the Recall@100 of 0.5782 and the NDCG@100 of 0.2321 on
the iPhone-iPad dataset, which gains improvements over Popular, WMF, CMF-WMF at
10.61%, 1.53%, 1.50% in Recall@100, and 32.10%, 7.55%, 3.57% in NDCG@100. Mean-
while, STAR-WMF outperforms Popular, WMF, CMF-WMF of 11.43%, 2.21%, 1.32% in
Recall@10, and 8.57%, 2.12%, 1.02% in NDCG@10 on the iPhone-iPad-iMac dataset.
The results show that STAR can also have a great performance in the top-N task when
it is embedded into a top-N recommendation algorithm. (2) Personalized algorithms
(WMF, CMF-WMF, and STAR-WMF) outperform nonpersonalized algorithm (Popular),
since the ranking result heavily depends on individual user’s preferences.

6. CONCLUSION AND FUTURE WORK

In this article, we presented a novel cross-platform App recommendation framework
via jointly modeling numerical ratings and textual content. Particularly, it improves
the performance of the rating prediction by capturing common features and distin-
guishing specific features of Apps across multiple platforms. It is capable of alleviating
the data sparsity problem via forcing common feature sharing across platforms, which
is particularly beneficial to less popular platforms. Meanwhile, it is able to solve the
new-user and new-App cold-start problems to a certain extent. To validate the effec-
tiveness of our proposed approach, we constructed two benchmark datasets. Extensive
experiments on the two datasets demonstrated the efficacy of our STAR method. We
also performed microanalysis to show how our method targets at particular platforms
of Apps, how the common features and specific features of Apps affect the results, and
how our framework performs in the top-N recommendation.

In the future, we plan to extend our work in the following three aspects: (1) Modeling
users implicit feedback on different platforms. Since implicit feedback (e.g., browsing
history, purchasing history) are richer and easier to collect than explicit ratings, it
will be more beneficial to model users’ implicit feedback. (2) Training topic models
and latent factor methods in a unified framework, which may further improve the
performance. (3) Realizing the App recommendation task in an online manner. Users’
personal interests change over time; so do the topics of reviews’ content of Apps. It
would be helpful to utilize users’ reviews to capture the dynamic changes of both users’
preferences and Apps’ features as has been studied in Zhang et al. [2014] and He et al.
[2015].

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

37:24 D. Cao et al.

REFERENCES

Gediminas Adomavicius, Ramesh Sankaranarayanan, Shahana Sen, and Alexander Tuzhilin. 2005. Incor-
porating contextual information in recommender systems using a multidimensional approach. ACM
Transactions on Information Systems 23, 1 (2005), 103-145.

Gediminas Adomavicius and Alexander Tuzhilin. 2011. Context-aware recommender systems. In Recom-
mender Systems Handbook. Springer, 217-253.

Yang Bao, Hui Fang, and Jie Zhang. 2014. TopicMF: Simultaneously exploiting ratings and reviews for
recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence. AAAI Press, 2-8.
Upasna Bhandari, Kazunari Sugiyama, Anindya Datta, and Rajni Jindal. 2013. Serendipitous recommen-
dation for mobile apps using item-item similarity graph. In Information Retrieval Technology. Springer,

440-451.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet allocation. Journal of Machine
Learning Research 3 (2003), 993-1022.

Matthias Bohmer, Lyubomir Ganev, and Antonio Kriiger. 2013. Appfunnel: A framework for usage-centric
evaluation of recommender systems that suggest mobile applications. In Proceedings of the International
Conference on Intelligent User Interfaces. ACM, 267-276.

John S. Breese, David Heckerman, and Carl Kadie. 1998. Empirical analysis of predictive algorithms for
collaborative filtering. In Proceedings of the Conference on Uncertainty in Artificial Intelligence. AUAI
Press, 43-52.

Deng Cai, Qiaozhu Mei, Jiawei Han, and Chengxiang Zhai. 2008. Modeling hidden topics on document
manifold. In Proceedings of the ACM Conference on Information and Knowledge Management. ACM,
911-920.

Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L. Boyd-Graber, and David M. Blei. 2009. Reading
tea leaves: How humans interpret topic models. In Proceedings of the Advances in Neural Information
Processing Systems Conference. 288-296.

Ning Chen, Steven C. H. Hoi, Shaohua Li, and Xiaokui Xiao. 2015. Simapp: A framework for detecting similar
mobile applications by online kernel learning. In Proceedings of the ACM International Conference on
Web Search and Data Mining. ACM, 305-314.

Ning Chen, Steven C. H. Hoi, Shaohua Li, and Xiaokui Xiao. 2016. Mobile app tagging. In Proceedings of the
ACM International Conference on Web Search and Data Mining. ACM, 63-72.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen
Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, and others. 2016. Wide & deep learning for recom-
mender systems. arXiv preprint arXiv:1606.07792 (2016).

Enrique Costa-Montenegro, Ana Belén Barragans-Martinez, and Marta Rey-Lopez. 2012. Which app? A
recommender system of applications in markets: Implementation of the service for monitoring users’
interaction. Expert Systems with Applications 39, 10 (2012), 9367-9375.

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of recommender algorithms on
top-n recommendation tasks. In Proceedings of the ACM Conference on Recommender Systems. ACM,
39-46.

Gintare Karolina Dziugaite and Daniel M. Roy. 2015. Neural network matrix factorization. CoRR
abs/1511.06443 (2015). http://arxiv.org/abs/1511.06443

Ignacio Ferndndez-Tobias, Ivan Cantador, Marius Kaminskas, and Francesco Ricci. 2012. Cross-domain
recommender systems: A survey of the state of the art. In Spanish Conference on Information Retrieval.

Yong Ge, Hui Xiong, Alexander Tuzhilin, and Qi Liu. 2014. Cost-aware collaborative filtering for travel tour
recommendations. ACM Transactions on Information Systems 32, 1 (2014), 4.

Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. 2015. TriRank: Review-aware explainable recom-
mendation by modeling aspects. In Proceedings of the ACM International on Conference on Information
and Knowledge Management. ACM, 1661-1670.

Xiangnan He, Ming Gao, Min-Yen Kan, Yiqun Liu, and Kazunari Sugiyama. 2014a. Predicting the popularity
of web 2.0 items based on user comments. In Proceedings of the International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, 233—-242.

Xiangnan He, Min-Yen Kan, Peichu Xie, and Xiao Chen. 2014b. Comment-based multi-view clustering of
web 2.0 items. In Proceedings of the International Conference on World Wide Web. ACM, 771-782.

Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast matrix factorization for online
recommendation with implicit feedback. In Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM.

Gregor Heinrich. 2008. Parameter Estimation for Text Analysis. Technical Report, University of Leipzig.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

http://arxiv.org/abs/1511.06443

Cross-Platform App Recommendation by Jointly Modeling Ratings and Texts 37:25

Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. 1999. An algorithmic framework
for performing collaborative filtering. In Proceedings of the International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, 230-237.

Thomas Hofmann. 1999. Probabilistic latent semantic indexing. In Proceedings of the International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM, 50-57.

Thomas Hofmann. 2001. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning
42, 1-2 (2001), 177-196.

Thomas Hofmann. 2004. Latent semantic models for collaborative filtering. ACM Transactions on Informa-
tion Systems 22, 1 (2004), 89-115.

Thomas Hofmann and Jan Puzicha. 1999. Latent class models for collaborative filtering. In Proceedings of
International Joint Conference on Artificial Intelligence. AAAI Press, 688—693.

Cheng-Kang Hsieh, Longqi Yang, Honghao Wei, Mor Naaman, and Deborah Estrin. 2016. Immersive rec-
ommendation: News and event recommendations using personal digital traces. In Proceedings of the
International Conference on World Wide Web. ACM, 51-62.

Liang Hu, Jian Cao, Guandong Xu, Longbing Cao, Zhiping Gu, and Can Zhu. 2013. Personalized recommen-
dation via cross-domain triadic factorization. In Proceedings of the International Conference on World
Wide Web. ACM, 595-606.

Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for implicit feedback datasets. In
Proceedings of the IEEE International Conference on Data Mining. IEEE, 263-272.

Mohsen Jamali and Laks Lakshmanan. 2013. HeteroMF: Recommendation in heterogeneous information
networks using context dependent factor models. In Proceedings of the International Conference on World
Wide Web. ACM, 643-654.

Meng Jiang, Peng Cui, Xumin Chen, Fei Wang, Wenwu Zhu, and Shigiang Yang. 2015. Social recommendation
with cross-domain transferable knowledge. IEEE Transactions on Knowledge and Data Engineering 27,
11 (2015), 3084-3097.

Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver. 2010. Multiverse recommen-
dation: N-dimensional tensor factorization for context-aware collaborative filtering. In Proceedings of
the ACM Conference on Recommender Systems. ACM, 79-86.

Alexandros Karatzoglou, Linas Baltrunas, Karen Church, and Matthias Bohmer. 2012. Climbing the app
wall: Enabling mobile app discovery through context-aware recommendations. In Proceedings of the
ACM International Conference on Information and Knowledge Management. ACM, 2527—-2530.

Yehuda Koren. 2008. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 426-434.

Yehuda Koren. 2010. Collaborative filtering with temporal dynamics. Communications of the ACM 53, 4
(2010), 89-97.

Yehuda Koren and Robert Bell. 2011. Advances in collaborative filtering. In Recommender Systems Hand-
book. Springer, 145-186.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender
systems. Computer 8 (2009), 30-37.

Chung-Yi Li and Shou-De Lin. 2014. Matching users and items across domains to improve the recommenda-
tion quality. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 801-810.

Chen Lin, Runquan Xie, Xinjun Guan, Lei Li, and Tao Li. 2014b. Personalized news recommendation via
implicit social experts. Information Sciences 254 (2014), 1-18.

Chih-Jen Lin. 2007. Projected gradient methods for nonnegative matrix factorization. Neural Computation
19, 10 (2007), 2756-2779.

Jovian Lin, Kazunari Sugiyama, Min-Yen Kan, and Tat-Seng Chua. 2013. Addressing cold-start in app rec-
ommendation: Latent user models constructed from twitter followers. In Proceedings of the International
ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 283—-292.

Jovian Lin, Kazunari Sugiyama, Min-Yen Kan, and Tat-Seng Chua. 2014a. New and improved: Modeling
versions to improve app recommendation. In Proceedings of the International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, 647-656.

Guang Ling, Michael R. Lyu, and Irwin King. 2014. Ratings meet reviews, a combined approach to recom-
mend. In Proceedings of the ACM Conference on Recommender Systems. ACM, 105-112.

Christoph Lippert, Stefan Hagen Weber, Yi Huang, Volker Tresp, Matthias Schubert, and Hans-Peter Kriegel.
2008. Relation prediction in multi-relational domains using matrix factorization. In Proceedings of the
NIPS Workshop: Structured Input-Structured Output. Citeseer.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

37:26 D. Cao et al.

Bin Liu, Deguang Kong, Lei Cen, Neil Zhengiang Gong, Hongxia Jin, and Hui Xiong. 2015. Personalized
mobile app recommendation: Reconciling app functionality and user privacy preference. In Proceedings
of the ACM International Conference on Web Search and Data Mining. ACM, 315-324.

Duen-Ren Liu, Pei-Yun Tsai, and Po-Huan Chiu. 2011. Personalized recommendation of popular blog articles
for mobile applications. Information Sciences 181, 9 (2011), 1552—-1572.

Qi Liu, Haiping Ma, Enhong Chen, and Hui Xiong. 2013. A survey of context-aware mobile recommendations.
International Journal of Information Technology & Decision Making 12, 01 (2013), 139-172.

Qiang Liu, Shu Wu, and Liang Wang. 2015. COT: Contextual operating tensor for context-aware recom-
mender systems. In Proceedings of the AAAI Conference on Artificial Intelligence. AAAI Press, 203—209.

Benjamin M. Marlin, Richard S. Zemel, Sam Roweis, and Malcolm Slaney. 2007. Collaborative filtering
and the missing at random assumption. In Proceedings of the Conference on Uncertainty in Artificial
Intelligence. AUAI Press, 267-276.

Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics: Understanding rating dimen-
sions with review text. In Proceedings of the ACM Conference on Recommender Systems. ACM, 165-172.

Andriy Mnih and Ruslan Salakhutdinov. 2007. Probabilistic matrix factorization. In Proceedings of the
Advances in Neural Information Processing Systems Conference. 1257-1264.

Ligiang Nie, Yi-Liang Zhao, Xiangyu Wang, Jialie Shen, and Tat-Seng Chua. 2014. Learning to recommend
descriptive tags for questions in social forums. ACM Transactions on Information Systems 32, 1 (2014),
5.

Cosimo Palmisano, Alexander Tuzhilin, and Michele Gorgoglione. 2008. Using context to improve predictive
modeling of customers in personalization applications. IEEE Transactions on Knowledge and Data
Engineering 20, 11 (2008), 1535-1549.

Umberto Panniello, Alexander Tuzhilin, Michele Gorgoglione, Cosimo Palmisano, and Anto Pedone. 2009.
Experimental comparison of pre- vs. post-filtering approaches in context-aware recommender systems.
In Proceedings of the ACM Conference on Recommender Systems. ACM, 265—-268.

Aditya Parameswaran, Petros Venetis, and Hector Garcia-Molina. 2011. Recommendation systems with
complex constraints: A course recommendation perspective. ACM Transactions on Information Systems
29, 4 (2011), 20.

Steffen Rendle. 2011. Context-Aware Ranking with Factorization Models. Springer.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian
personalized ranking from implicit feedback. In Proceedings of the Conference on Uncertainty in Artificial
Intelligence. AUAI Press, 452—-461.

Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2011. Fast context-
aware recommendations with factorization machines. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 635-644.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the International Conference on World Wide Web. ACM,
285-295.

Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock. 2002. Methods and metrics
for cold-start recommendations. In Proceedings of the International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM, 253-260.

Kent Shi and Kamal Ali. 2012. GetJar mobile application recommendations with very sparse datasets. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 204-212.

Ajit P. Singh and Geoffrey J. Gordon. 2008. Relational learning via collective matrix factorization. In Pro-
ceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
650-658.

Gabor Takécs, Istvan Pildszy, Bottyan Németh, and Domonkos Tikk. 2008. Matrix factorization and neighbor
based algorithms for the netflix prize problem. In Proceedings of the ACM Conference on Recommender
Systems. ACM, 267-274.

Chong Wang and David M. Blei. 2011. Collaborative topic modeling for recommending scientific articles. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 448-456.

Shuang-Hong Yang, Bo Long, Alex Smola, Narayanan Sadagopan, Zhaohui Zheng, and Hongyuan Zha.
2011. Like like alike: Joint friendship and interest propagation in social networks. In Proceedings of the
International Conference on World Wide Web. ACM, 537-546.

Dragomir Yankov, Pavel Berkhin, and Rajen Subba. 2013. Interoperability ranking for mobile applications.
In Proceedings of the International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 857-860.

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

Cross-Platform App Recommendation by Jointly Modeling Ratings and Texts 37:27

Peifeng Yin, Ping Luo, Wang-Chien Lee, and Min Wang. 2013. App recommendation: A contest between
satisfaction and temptation. In Proceedings of the ACM International Conference on Web Search and
Data Mining. ACM, 395-404.

Liang Zhang, Deepak Agarwal, and Bee-Chung Chen. 2011. Generalizing matrix factorization through
flexible regression priors. In Proceedings of the ACM Conference on Recommender Systems. ACM, 13-20.

Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping Ma. 2014. Explicit factor
models for explainable recommendation based on phrase-level sentiment analysis. In Proceedings of
the International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM,
83-92.

Vincent Wenchen Zheng, Bin Cao, Yu Zheng, Xing Xie, and Qiang Yang. 2010. Collaborative filtering meets
mobile recommendation: A user-centered approach. In Proceedings of the AAAI Conference on Artificial
Intelligence. AAAI Press, 236-241.

Ke Zhou, Shuang-Hong Yang, and Hongyuan Zha. 2011. Functional matrix factorizations for cold-start rec-
ommendation. In Proceedings of the International ACM SIGIR Conference on Research and Development
in Information Retrieval. ACM, 315-324.

Hengshu Zhu, Enhong Chen, Kuifei Yu, Huanhuan Cao, Hui Xiong, and Jilei Tian. 2012. Mining personal
context-aware preferences for mobile users. In Proceedings of the IEEE International Conference on Data
Mining. IEEE, 1212-1217.

Hengshu Zhu, Chuanren Liu, Yong Ge, Hui Xiong, and Enhong Chen. 2015. Popularity modeling for mobile
apps: A sequential approach. IEEE Transactions on Cybernetics 45, 7 (2015), 1303-1314.

Hengshu Zhu, Hui Xiong, Yong Ge, and Enhong Chen. 2014. Mobile app recommendations with security
and privacy awareness. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 951-960.

Received June 2016; revised October 2016; accepted November 2016

ACM Transactions on Information Systems, Vol. 35, No. 4, Article 37, Publication date: July 2017.

