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Event-based social networking services, such as Meetup, are capable of linking online virtual interactions to
offline physical activities. Compared to mono online social networking services (e.g., Twitter and Google+),
such dual networks provide a complete picture of users’ online and offline behaviors that more often than
not are compatible and complementary. In the light of this, we argue that joint learning over dual networks
offers us a better way to comprehensively understand user behaviors and their underlying organizational
principles. Despite its value, few efforts have been dedicated to jointly considering the following factors
within a unified model: (1) local user contextualization, (2) global structure coherence, and (3) effectiveness
evaluation. Toward this end, we propose a novel dual clustering model for community detection over dual
networks to jointly model local consistency for a specific user and global consistency of partitioning results
across networks. We theoretically derived its solution. In addition, we verified our model regarding multiple
metrics from different aspects and applied it to the application of event attendance prediction.
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1. INTRODUCTION

The past decades have witnessed the proliferation of conventional online social net-
working services such as Facebook! and Renren,? which break the barrier of physical
distance and allow interactions among friends in a virtual world. As a new branch of
social networking services, event-based social networks (EBSNs) are taking root and

Thttp://www.facebook.com/.
2http://www.renren.com/.
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Fig. 1. Demonstration of EBSNs, where users u can be involved in multiple online groups represented by
dash circles and attend the specific physical event at the specific location / and timestamp ¢.

exerting tremendous fascination on people. Distinct from conventional online social
networking services, which usually connect acquaintances, EBSNs not only help in-
dividuals find like-minded event attendees and further form lasting, influential, and
local community groups, but they also facilitate them to regularly meet face-to-face
in various physical locations. In other words, EBSNs emphasize more on organizing
“regional” physical events, such as “1 hour of bubble soccer” and “bubble bump sports
at Kovan Sports Centre Pte Ltd” among local communities. To date, the unique and
interesting services of EBSNs have attracted a sheer volume of users. The most repre-
sentative examples are Meetup,? Plancast,* and Facebook Event.? Take Meetup as an
example: as of August 2015, it claimed to have 27.7 million members in 180 countries
and 210,240 groups [Liu et al. 2012; Pham et al. 2016].

As demonstrated in Figure 1, EBSNs are able to present online and offline social
networking services simultaneously. In the online part, users are associated with sev-
eral interest tags, such as fashion, music, and technique [Li et al. 2015]. They can
be concurrently involved in multiple online groups according to their personal inter-
ests [Wang et al. 2011; Song et al. 2015b]. Within the same groups, users can interact
with each other online by exchanging thoughts and sharing experiences on topics of
common interests [Li et al. 2015]. In the offline part, EBSNs also support and record
user interactions in the physical world, where users can create and invite others to join
social events, such as dining out and jogging, at specific places and times [Zhang et al.
2016]. As we can see, each network may contain some knowledge that the other does
not have; therefore, they can be jointly employed to comprehensively and accurately

3https://www.meetup.com.
4https://www.eventbrite.com.
Shttps://www.facebook.com/events/upcoming/.
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describe user behaviors. In fact, user behaviors across online and offline networks are
inseparable and mutually reinforced [Tang and Liu 2009; Li et al. 2012; Nie et al. 2016;
Halcrow et al. 2016]. On one hand, online group users sharing common interests hold
a better than average chance of attending the same offline events. On the other hand,
coparticipating in the offline events can in turn strengthen their social ties and further
propel the engagement of online interactions [Foley et al. 2015; Nie et al. 2016]. In
summary, online and offline user behaviors are usually compatible and complemen-
tary to each other rather than independent. We thus argue that, as compared to pure
online or offline network, appropriate aggregation of them can provide us a better way
to comprehensively understand user behaviors and their underlying organizational
principles.

In this article, we address one particular and fundamental task, namely commu-
nity detection in EBSNs. Typical community detection aims at grouping persons who
are connected to each other by relatively durable social relations to form a tight and
cohesive social entity due to the presence of a “unity of will” or “sharing of common
values” [Ng et al. 2011; James et al. 2012; Nie et al. 2016]. Community detection by
jointly considering online and offline networks will offer opportunities to gain new
insights into user behaviors and their organizational structures, and further support
new services and applications. However, this task is nontrivial and poses a set of tough
challenges:

(1) User contextualization: Due to various complex reasons, some users may be active
in online interactions but rarely attend physical events or vice versa. This leads to
the problem of inconsistent and unbalanced interactive behaviors of the same users
across online and offline networks. Moreover, the same users probably own different
close neighborhoods, namely social circles, in these different networks. Therefore,
how to design a suitable approach to characterizing the invariant essence of users
across heterogeneous networks remains largely untapped.

(2) Structure coherence: From an overall perspective, online and offline networks are
composed of the same set of users; meanwhile, they interpret their behaviors from
different but coherent angles. Accordingly, we believe that the inherent and hidden
community structures embedded in these two networks should be similar. However,
how to properly model the consensus structures to reinforce the performance of
community detection is a challenging issue.

(3) Effectiveness evaluation: How to quantitatively validate the result of community
detection and verify its applicability in real-world problems is another challenge
we face.

Community detection across online and offline networks can be treated as a partic-
ular task of either multiview clustering or community detection in multilayer graphs.
These two clustering technologies both exploit and fuse information from multiple
views [Leung et al. 2011; Ng et al. 2011; Tang et al. 2012; Li et al. 2014]. It is worth-
while mentioning that a wide range of approaches have been proposed, with strong
theoretical underpinnings and great practical success. In general, prior efforts can be
roughly summarized into two categories. One is to concatenate a set of features ex-
tracted from multiple views before applying any conventional off-the-shelf clustering
algorithms on these features [Blaschko and Lampert 2008; Chaudhuri et al. 2009]. The
other is to derive clustering structures from individual views or individual layer graphs
and reconcile them based on the principle of consensus [Bruno and Marchand-Maillet
2009; Gao et al. 2013a; Kumar and Daumé 2011; Kumar et al. 2011; Liu et al. 2012;
Zhou and Burges 2007; Boden et al. 2012; Zeng et al. 2006]. However, the approaches in
the first category usually ignore the relatedness among internetworks and frequently
suffer from the curse of dimensionality and incompatible feature space. The second

ACM Transactions on Information Systems, Vol. 36, No. 1, Article 4, Publication date: April 2017.



4:4 X. Wang et al.

category is to derive clustering structures from individual views or layer graphs and
reconcile them based on the principle of consensus. The approaches in this category
usually model the global consensus across views or layers and consider more compre-
hensive representations of users compared with that of the first category. However,
rare efforts are dedicated to involving the local consensus, which is more beneficial to
user contextualization [Yang et al. 2010]. In addition, few of them have been applied
to solve the community detection over EBSNs.

To tackle the preceding challenges, we propose CLEVER—a novel dual CLustering
model for community dEtection oVer dual nEtwoRks. Rather than learning from on-
line and offline separately, CLEVER is capable of reinforcing community detection over
online and offline networks by coregularizing local and global consistency in a unified
model. To be more specific, local consistency is to encourage the invariants of the same
users across different networks, whereby users are contextualized by their surround-
ing neighbors. This is inspired by the proverb “a leopard never changes his spots in
different environments” and the principle of “neighborhood preserving” [Ronen et al.
2014; Jiang et al. 2014; Nie et al. 2016]. Comparatively speaking, global consistency
aims to maximize the agreement on community detection results in separate net-
works, which intelligently ensures the similar underlying structures over the same set
of users. We coregularize local and global consistency in our proposed CLEVER model
at the same time. We verify our model on a publicly accessible dataset and apply it to
a real-world application: event attendance prediction. By conducting experiments on a
representative dataset crawled from Meetup, we demonstrate that our proposed model
yields significant gains in EBSNs’ community detection and achieves fairly satisfactory
results for the application.

The main contributions of this article are threefold:

(1) We propose a novel dual clustering model for community detection over virtual-
physical networks in EBSNs. It enhances the community detection performance
by harvesting the compatible and complementary information cues with local and
global consistency.

(2) We theoretically optimize our proposed model by the novel and effective Crank-
Nicolson-like update scheme, which tackles the quadratic programming optimiza-
tion problem with orthogonal constraints.

(3) We validate the effectiveness of our proposed CLEVER model on the application
of event attendance prediction. In addition, we have released our data, code, and
parameter settings to facilitate other researchers to repeat our experiments and
verify their own models.®

The remainder of the article is organized as follows. Section 2 reviews the related
work. Sections 3 and 4 respectively detail our proposed CLEVER model and present
experimental results and analyses. Section 5 introduces the application, followed by
our conclusion and future work in Section 6.

2. RELATED WORK

Multiview clustering and multilayer graph clustering methods are suitable for dual
clustering over dual networks in EBSNs. The basic idea of these approaches is to
partition objects into clusters based on multiple representations of the object from
different views. In recent years, multiview and multilayer graph learning has received
increasing attention, and existing algorithms can be classified into two categories: early
fusion [Blaschko and Lampert 2008; Chaudhuri et al. 2009] and joint learning [Bruno
and Marchand-Maillet 2009; Gao et al. 2013a; Kumar and Daumé 2011; Kumar et al.

6http:/lms-dataming.wix.com/clever.
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2011; Liu et al. 2012; Zhang et al. 2015; Zeng et al. 2006; Boden et al. 2012; Cai et al.
2013; He et al. 2014; Li et al. 2014].

The early fusion methods concatenate all views into a single view and then adapt
any conventional off-the-shelf clustering algorithms, such as k-means [Blaschko and
Lampert 2008; Chaudhuri et al. 2009]. For instance, Chaudhuri et al. [2009] con-
structed a lower-dimensional feature subspace from multiple views of data by canoni-
cal correlation analysis (CCA) and then applied single linkage clustering on the projec-
tions. Blaschko and Lampert [2008] utilized kernel-CCA to simultaneously learn linear
projections from multiple spaces into a common latent space and then proposed a gen-
eralization of spectral clustering based on the latent space. However, these approaches
generally overlook the obvious fact that each view has its own specific statistical prop-
erty and ignore the structural relatedness among views. Additionally, these approaches
suffer from the overfitting problem in case of insufficient training samples.

The other paradigm of joint learning aims to derive clustering structures and at-
tributes from individual views and reconcile them based on the principle of consensus.
This line of research can be divided into several subdirections. First, the normalized
cut, generalized from a single view to multiple views, finds a cut that is close to the
optimal one on each graph. Zhou and Burges [2007] generalized the normalized cut ap-
proach to multiple views via a random walk formulation. Second, cotraining is to limit
clustering result in each view to agree with those in other views. Kumar and Daumé
[2011] incorporated a cotraining framework with multiview spectral clustering, where
the graph structure of one view is constrained and modified by the eigenvectors of the
Laplacian in other views. Third, joint nonnegative matrix factorization (NMF) for mul-
tiview clustering jointly factorizes the multiple matrices through coregularization. He
et al. [2014] applied NMF on multiview data to obtain coefficient matrices derived from
factorizations of different views and further regularized them toward a common consen-
sus. Moreover, Ni et al. [2015] developed a flexible and robust framework based on NMF
that clusters multiple domain-specific networks sharing multiple underlying cluster-
ing structures. Fourth, coregularization encourages that corresponding data points in
each view should have the same cluster membership via coregularizing the clustering
hypotheses. Kumar and Daumé [2011] coregularized the clustering hypotheses from
multiple views and further enforced these hypotheses to be consistent across all views
via a disagreement measurement. Cai et al. [2011] proposed an effective multimodal
spectral clustering method via learning a commonly shared graph Laplacian matrix
by unifying different views. Fifth, pattern mining focuses on attribute and structural
information of multiple graphs. Boden et al. [2012] proposed a multilayer graph learn-
ing method considering both aspects of structural density and attribute similarity of
nodes. Liu et al. [2012] employed an extended Fiedler method to incorporate the hetero-
geneity between online and offline networks during the community detection process.
Although existing approaches focus on the principle of global consensus across views,
they ignore local consistency of nodes’ contextualization. In addition, few of them are
applied to the situation of community detection over online and offline networks.

3. STEPWISE MODEL DEMONSTRATION

We first declare some notations. In particular, we use bold capital letters (e.g., X) and
bold lowercase letters (e.g., X) to denote matrices and vectors, respectively. We use I to
denote the identity matrix. If not clarified, all vectors are in column forms. We employ
nonbold letters (e.g., x) to represent scalars and Greek letters (e.g., 8) as parameters.
We denote the Frobenius norm and the trace of matrix X as || X||  and ¢r(X), respectively.
Moreover, let X(i, j), X(i, :), and X(:, j) respectively denote the entry in row i and column
J, the i-th row, and the j-th column of X. We utilize the superscripts v and p to indicate
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the virtual (online) and physical (offline) networks, respectively, as well as subscript :
to represent the specific user i.

3.1. Problem Statement

Suppose that we have a set of N users. Let us respectively denote their representations
in online and offline networks as X’ = [x},...,x3] € RP>N and XP = [x],...,xR] €
RPN where D, and D, are the corresponding feature dimensions. In particular, we
characterize the user online and offline representations (i.e., X' and X?) by using their
interest tags and physical event attendance records, respectively. D, and D, separately
denote the number of all interest tags and event records.

The basic insight of community detection is to encourage similar users to have similar
community assignments [Pham et al. 2016]. Toward this end, we need to reveal the
pairwise similarities among users and then construct the networks, which explore
the implicit topological structure among users. In this work, we employ the Gaussian
similarity function on user representations to obtain online and offline social affinity
graphs. It is noted that some off-the-shelf clustering methods, such as k-means, applied
on user representations rather than social networks, hardly lead themselves to the
explicit topology and compact communities. In particular, we construct online and
offline social affinity graphs A’ € RV*¥ and A? € RV*VN by calculating their pairwise
similarities with the Gaussian similarity function [Nie et al. 2011a, 2015, 2016],

P i
v.] - p (91))2
1
o =2 —x?|” v
AP(i, j) = exp N

where the radius parameters 6’ and 6” are simply set as the median of the Euclidean
distances of all user pairs in online and offline networks separately.

Our research objective is to obtain compact and cohesive partitions P¥ = {Py, ..., P¢}
and PP = {PY, ..., P5} over the virtual and physical networks simultaneously, where
Py (P?) refers to the i-th community identified from the virtual (physical) network and
C denotes the number of clusters. Meanwhile, P' and P? should be as consensus as
possible from the perspective of local user level and global structure level.

For the ease of formulation, inspired by the work in Dhillon et al. [2004], we define
two scaled assignment matrices G* = [G(i, c)] € RV*C and G? = [GP(i,c)] € RN*C to
respectively represent P’ and P?. In particular, they are formulated as follows:

;, if x¥ ¢ PV
Glo)= |y ST
0, otherwise

1 ifxP ¢ PP 2)
——, ifx eP;
GP(i,c) = 1 V/IPE o
0, otherwise

According to Equation (2), we can derive the orthogonal properties of G' and G” as
follows:

GG 1" (3)

Rather than forcing G' = G” (i.e., the same community structure over dual networks),
we remain the different but coherent structures over different networks (i.e., G’ and

{G”TG” =1
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GP), considering that users may have inconsistent online and offline behaviors. Hence,
how to bridge the gap between these structures plays a pivotal role in propagating
interdependent information implicitly and further boosting the clustering performance.

3.2. Clustering over Individual Network

Clustering [Chi et al. 2007; Wang and Davidson 2010; Wauthier et al. 2012; Liu et al.
2015] over a single network thus far has been well studied. Thereinto, spectral cluster-
ing [Ng et al. 2001] has become one of the most popular modern clustering algorithms.
Theoretically, it is simple to implement via utilizing the eigenvectors of the Laplacian
matrix derived from the data. In practice, it can be solved efficiently by a standard
linear algebra software and generally outperforms traditional clustering methods such
as k-means. Following the standard spectral clustering framework, we can separately
perform clustering over online and offline networks via the following formulations:

Ir(l}in tr(G'T LPGY), subject to GG =1

, 4
n(l}in tr(GPT £PGP), subject to GP TGP =1 )
P
where £¥ and £? are the normalized Laplacian matrices over online and offline net-
works, respectively, and

£ =T-(D") ;A DY) 5)
P =1—(DP) 2AP(DP) 2

where DV and D? are the diagonal degree matrices. Despite huge empirical success
of spectral clustering methods over a single network, they are unable to leverage the
compatible and complementary relatedness among multiple networks to enhance the
partition performance. Hence, their current stage is suboptimal to community detection
over EBSNs.

3.3. Clustering over Dual Networks Toward Global Consistency

To achieve improved community detection performance over EBSNs, we simultane-
ously harvest the information from online and offline views. The basic idea is that
these two networks admit the shared underlying clustering structure. In other words,
corresponding users should have consistent cluster memberships across dual networks.
Here, we encode the cluster memberships of users with the scaled assignment matrices
GV and G?, which can be viewed as new user representations (with the i-th row stand-
ing for the i-th user representation). With such new representations at hand, we aim to
encourage global consistency, which encourages all pairwise similarities of users under
the new representations to be similar over dual networks. This amounts to enforcing
online and offline clustering structures to be consistent in a global view.

Inspired by the disagreement measurement function presented in Kumar et al. [2011]
and Tang et al. [2012], we propose minimizing the following function over dual networks
to implement global consistency:

¢e’ 66|’

Deopai(GY, GP) = -
¥ IG* % IGP|I2%

(6)

F
where G'(z, :) and GP”(i, :) refer to online and offline cluster memberships for the same
user i, respectively. We treat the scaled community assignment matrices G’ and G? as

the new user representations [Kumar et al. 2011]. Accordingly, G*G*" and G?G?" rep-
resent online and offline pairwise similarities among users, respectively. The similarity
matrices are normalized by their Frobenius norms to make the same users comparable
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across networks. We note that ||G*||% = tr(G*' G*) = C and ||G?||% = tr(G? ' GP) = C,
where C is the number of communities, and the orthogonal constraints can make them
comparable in nature.

We observed that some users have somehow different behaviors across the physical
and virtual societies. This may result in users having different grouping distributions.
To address such a problem, we intentionally do not enforce the grouping information
over online and offline networks to be equal. Instead, we leverage the pairwise similar-
ity among users to illustrate global consistency, as we found that users’ relations are
relatively stable across networks.

Combining global consistency with the spectral clustering objectives mentioned in
Equations (4) and (5), we obtain the following joint optimization problem:

min tr(G'T £'GY) + tr(GPT £PGP)
e’ GrarT|’

IG*I%  1GPI%

A

5 (7

F
subjectto G''G'=1, GP'GP =1

3.4. Clustering over Dual Networks Toward Local Consistency

Apart from global consistency, we further utilize neighborhood-preserving matching
to explore the consensus over dual networks. In particular, neighborhood preserving
assumes that the same users in different networks may have similar ego networks and
social circles in nature [Jiang et al. 2014; Yang et al. 2014; Zhang et al. 2013, 2016a].
In this work, for each user, we contextualize the social circles by his or her nearest
neighbors. We formulate this idea as the problem of “local consistency.”

For a given user i, we calculate his or her similarities with others based on Equa-
tion (1). Hereafter, we select the K users with highest similarities as the nearest
neighbors to construct his or her online and offline social circles. We denote them as
Nx(x}) and Ng(x!),

{NK(x;f) ={i],...,i%} ®

Ni(xP) = {if,...,i%)
where i} and i} indicate the k-th nearest neighbor of the i-th user in online and offline

settings, respectively. We thus can define two selection matrices, SY = [S'(j, k)] € RV*K
and S” = [SP(j, k)] € RN*K for each user to select its neighbors based on Equation (8):

1, ifj =i € Ng(x!)
0, otherwise ’
1, ifj =il e Nx(xP)
0, otherwise ’

&umz{
©
$uM={

We hence can obtain the social circles X} € RDxK gnd XP € RP»<K of the user i as
follows:

XV =X"S?
{ 14 13 (10)

XP = XPS?
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Online Social Circle of ul Offline Social Circle of ul
Cluster1:{u>,us}; Clusterl:{ux,us};
Cluster2:{u; }; A #users Cluster2:{us};
Cluster3:{us}; Cluster3:{us };

[ online
M offline

» cluster index

ciffcafcs

Fig. 2. Illustration of local consistency over dual networks for a specific user u;. Dashed circles represent
his or her social circles with the size of four, and different colored edges denote different communities.

Given a specific user i, and his or her local social circles Nx(x?) and Nx(x"), we can
select the corresponding K distribution vectors over C clusters from G' and G?, and we
then can define the local scaled cluster assignment matrices G! € RE*C and G € RExC
as follows:

G =8"G
11)

G =s"Gr

Given the social circles across dual-networks, as illustrated in Figure 2, we aim to
regularize local consistency, which encourages the cluster distributions of a specific
user’s social circle over the C clusters to be close across dual networks. This amounts
to enforcing online and offline contextualization of the specific user to be consistent in
a local view.

It is noticeable that online and offline social circles of the same user may involve
different neighbors, namely Ng(x!) # Ng(x?). For instance, the £-th closest neighbors
of the i-th user in dual networks are not necessarily the same person, and hence
they can fall into different clusters. However, for the same cluster c, it is assumed
to have similar weights over the K neighbors. In other words, the difference between

Z,f G!(k,c) and Zf G?(k, c) should be as small as possible. As such, we measure local
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consistency by

Dlocal(Glys Gf)

c /K K 2
> (Z GJ(k.c)— > Gl c)>
c=1 \k=1 k=1

= |G} -GD)'e

where e € RX is the all-ones’ vector.
Furthermore, we can estimate the consistency of all users’ online and offline social
circles as follows:

I, (12)

Dioca(G*.G?) = " (G — G)) e, (13)
i=1
Analogous to the clustering over dual networks toward global consistency, we have
the following joint optimization problem toward local consistency:

min tr(G' T £'GY) + tr(GP T LPGP)

GL
Al v
+5 le |Gy -
subject to G'G'=1, G'GP=L1

3.5. CLEVER Model Toward Global and Local Consistency

As discussed in Section 3.2, the objective functions of clustering over an individual
network can be expressed in the form of tr(G' ' £*G?) and ¢r(G? ' £°GP), where £’ and
LP are the normalized Laplacian matrices defined based on the affinity matrices A’
and A? in Equation (1), respectively. However, the conventional Laplacian matrix only
considers the topological structure of the user networks and overlooks the discrimina-
tive community information. As proposed in Yang et al. [2010] and Yu and Shi [2003],
the discriminative information is beneficial for exhibiting the manifold structure in
the networks and has a positive influence on community detection performance. To re-
fine the Laplacian matrices, we therefore resort to utilize the social circles across dual
networks and further uncover the intrinsic manifold structures of social communities.

To explore the discriminative information in each social circle, we turn to the Fisher
criterion [Friedman and Kandel 1999], which is widely used in image processing and
computer vision. Intuitively, to obtain the better community partitions, the distance
between users from different communities should be as large as possible, whereas the
distance between users within the same community should be the smallest. Therefore,
for a given social circle of the i-th user, we define the total scatter matrices T} and
T?, which sum up all pairwise distances between the near neighbors, and the between-
cluster scatter matrices B! and B, which sum up all distances between near neighbors
from different clusters:

T = 3 ey (65 = ) = wH' = XHHXT,

By = Yl m(uf — i Nf — i)' = XYHGGYTHX; T

T = ZJe N (XKD — uP)xP — )" = XPHHX? T,

B = Y0 nf(uf — uf Ny — puf)" = XPHGPG) "HX!'
where p! and pf respectively denote the means of the nearest neighbors in Nx(x¥) and
Ng(xP); uP and u“ separately represent the mean of the nearest neighbors within

(14)

) (15)
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the c-th cluster; H = I — £E € RE*K js a constant matrix; and E € RE*K is the all-
ones’ matrix, whereby K is the number of the nearest neighbors. To better characterize
the underlying structure of local circles, we define a new concept, called the local
discriminant score, as follows:

F(G)) = tr(G}"HG} — (T} + A1)"'B}) (16)
= tr(G'TSPHHEX} X/H + 1D 'HS! ' G")
=tr(G"T L}*GY),

where £/* = S'HH'X! 'XH + A" 'HS} . Similar to Equation (16), we have F(G?) =
tr(GP' £P*GP), where £P* = S"HHX? "X H+AI)"'HS? . A smaller local discriminant
score indicates that the neighbors in the social circles from different clusters are better
separated.

Considering all users’ social circles over dual networks, the relations G! = S!” G,

and G’ = S? "GP in Equation (11), we reformulate the conventional standard spectral
clustering methods with the local discriminant model in Equation (16) as the following
optimization problems:

min Y%, F(G}) = mintr(G*' £ GY)

min YV, F(GP) = min t+(GP " £P*GP) (an
Gr Gr

where £7* = YN % and £P* = YN, £* can be viewed as the modified Laplacian
matrices by employing discriminant information and manifold information over online
and offline networks, respectively.

At last, integrating the refined spectral clustering framework in Equation (17), global
consistency in Equation (6), and local consistency in Equation (13) over dual networks,
we ultimately reach the objective function of our proposed CLEVER model as follows:

(I}niél tr(G*T £V GY) + tr(GPT LPFGP) (18)
PP N WAl e Te TN o1 c Tl
+—= G!-GP) e|"+—= - ,
2 ;” ” 2 | IGv|I% IGP||% »

subject to G'G'=1, G''GP=L1

Overall, our proposed CLEVER model has two parameters, as shown in Equation (18).
Parameters A; and A, respectively regularize local and global consistency. We will detail
the parameter tuning procedure in the experiments.

Based on the scaled assignment matrices G' and G?, we can obtain the individual
partition results corresponding to online and offline networks. Furthermore, we con-

ducted the following equation on G’ and GP? to get the final unified community G:

~ 1~ 1.~ ~ 1 ~ 1
G= §G” + QG", G'=G"(G"®G") 2, G'=G"(G"®G") 2, (19)

where G¥ and G? denote the assignment matrices with their element as the probability
of the i-th user to the j-th community, and G represents the final unified assignment
matrix that combines online and offline parts and stands for the final probability
distributions over all communities. Thereafter, for each user, we can assign her or him
to the community with the highest probability. From the final partition process, we
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can find that it can guarantee the exact and clear partition result. It is noted that by
setting the flexible probability threshold, our framework can allow the users to drop
into multiple communities simultaneously.

3.6. Optimization
We can equally transform the third term in Equation (18) (i.e., the local consistency
term) into a trance-norm form as follows:

tr(G*TU'G") + tr(GPTUPGP) — 2tr(GP UV PGY), (20)

where U' = Y" S'ES!" ¢ RV Ur = Y SPES’' ¢ RV and UP =
S SPES)T e RVXN,

Similarly, we can restate the fourth term (i.e., the global consistency term) in Equa-
tion (18) with its equivalent trace-norm form as follows:

1

c?
As such, by ignoring the constant additive and scaling terms, our objective function in
Equation (18) can be rewritten as follows:

ér_liél F(G', GP) = énin tr(G*T 2'GY) + tr(GP T 2PGP)

U‘Gp

tr(G*G''G'G' " — 2G'G* ' GPGP T + GPGPTGPGP) = % — étr(G”G“TGPGl’T).

—tr(GPTUYPGY) — agtr(G'GY T GPGPT), (21)
subject to G'G'=1 GP'GP=1,

where 2" = L%+ %U” and 2P = P + %IUP. They can be regarded as the new Laplacian
matrices.

As can be seen, the preceding objective function is not easy to optimize because of
its nonconvex terms. Even worse, the orthogonality constraints are not only nonconvex
but also numerically expensive to preserve during iterations, although they play a key
role in joint clustering. Therefore, it is unsuitable to transform the problem into the
standard spectral clustering objective function [Kumar et al. 2011], which can be easily
optimized with the eigenvalue decomposition method like Nie et al. [2011b]. However,
Wen and Yin [2013] proposed using a Crank-Nicolson-like update scheme to preserve
the constraints; based on it, they developed curvilinear search algorithms with lower
per-iteration cost. Inspired by this, in this work we integrate this constraint-preserving
update scheme with the alternative optimization strategy to solve G' and G”.

We alternatively optimize one variable while fixing the other in each iteration.

In particular, given an initial Gﬁ)), we alternatively solve the following optimization
problems,
G, = arg ngn F(G?, Gg) ., subjecttoG''G* =1, (22)
and
G5+1) = arg n&n ]—'(GE’HD, G?), subject to GP'GP =1, (23)

until convergence, where ¢ is the iteration counter. Since the optimization in Equa-
tions (22) and (23) are symmetric, we only show how to efficiently solve Equation (22),
and the other can be solved in a similar way. The details are summarized in Algorithm 1.

The subroutine in Algorithm 1 is detailed in Algorithm 2. It accepts input G},, with

®
G(’;) fixed and outputs G?, ,, after the i-th iteration. Particularly, we apply the curvilin-

#+1)
ear search with the Barzilai-Borwein step method [Wen and Yin 2013] on Equation (22)
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ALGORITHM 1: Alternative Optimization to Solve G’ and G? with a Given Cluster Number C
and Local Circle Size K

Input: Objective function F(GY, GP),

parameters ¢ = {A1, A2, 0, 1,68, T, T, Tir}

Output: G, G

1: Initialize ¢ = 0O;

2: Initialize G{,), Gft) with random cluster assignment;
3: while G, and Gf;) do not converge do

4:  update G}, ,, with G{, fixed by Algorithm (2);

5. update G, ,, with G{,_ , fixed by Algorithm (2);
6: updatet < ¢+ 1;

7: end while

8: Return G' < G, and G? < G

p.
) )’

ALGORITHM 2: Curvilinear Search Method

Input: G, and function F according to Equation (22),
parameters ¢ = {A1, A2, 0,1, 8, T, Ty, Ti1, €}
Output: G, ,,

1: Initialize j = 0, W; = G, C; = 0 and Q; = 1;

2: while |[VF(W;)|| > ¢ do

3 VFW,;)=2L"W; — ,U"PGE — 20,G! GE W3
A, =VFW)W,  —W,VFW)';
Yj(fj) = (I + rEjlxj‘)il(l — 1-EJAJ)‘VJ,
4:  while F(Y;(r)) > C; + ptF.(Y;(0)) do
5: T = 4T,
Y;(0) = (I+3A;) 7 (I- 5A) W3
6: end while
7:  update W;;; < Y;(7);
update Qj+1 <~ an + 1,
(anCj+f(wj+l)) .
Qj+l ’
tr((Wj1-W;) (W) 1-W)))
[t ((Wy11-W,) (VFOW,)-VFW,)))
8:  sett =max {min {11, Tn}, T}
9: update j < j+1;
10: end while

11: Return Gy,

update C;;; «

update 7;:11 =

5>

~ W,

to update G, until convergence. For simplicity, we construct new sequences {W;} in
each iteration to update G{, by using the curvilinear search method (CSM) as follows:

W = argmin {F(W) = F(W. G, )}. (24)

Given a feasible point W; at the j-th iteration of CSM, W, can be generated by the
new trail point Y;(z;) according to the proposed approach in Wen and Yin [2013],

WJ'+1 = YJ'(‘L'J‘), (25)
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Table |. Statistics of the Regional Meetup Dataset

\ City Users (#) Interest Tags (#) Events (#) Avg. Tags Per User Avg. Events Per User |
California (CA) 5,904 2,664 6,106 23.42 13.55
New York City (NYC) 6,440 2,630 7,054 17.44 12.79

where Y;(z;) is determined by the Crank-Nicolson—like scheme via utilizing the gradi-
ent VF(W;) and a skew-symmetric matrix A,
VFW)) = 2L'W; — UG — 21,GE GE "W,
A = VEW)W,  — W;VFEW,)", (26)
Y(r;)) =0+ Z2A) ' d-FA)W,,

where 7; is the linear combination of the Barzilai-Borwein step size.

4. EXPERIMENTS

All experiments were conducted over a server equipped with an Intel Core 17-4970 CPU
at 3.60GHz on 32G RAM, four cores, and a 64-bit Windows 10 operating system.

4.1. Data Description

We conducted experiments on Meetup,” a publicly benchmarked dataset [Pham et al.
2015]. We utilized user profiles consisting of personal interest labels and event atten-
dance records to construct the online and offline networks, respectively. We detail the
constructions of these two networks as follows:

(1) We extracted Meetup users from the dataset and obtained 9,095 and 8,339 original
users with their profiles and event attendance records from the state of California
(CA) and New York City (NYC), respectively.

(2) We filtered out users with fewer than five interest tags and five event attendance
records to guarantee that all remaining users are relatively active across dual net-
works. We ultimately obtained 5,904 and 6,440 users in CA and NYC, respectively.
The details are summarized in Table I.

(3) We characterized the user online and offline representations (i.e., X" and X?) by
using their interest tags and physical event attendance records, respectively. In
particular, for the i-th user in CA, we transformed her or his distribution over
all interest tags and events into 2,664- and 6,106-dimensional feature vectors to
separately represent x! and x/, whereas there were 2,630- and 7,054-dimensional
vectors for the users in NYC.

(4) After obtaining the original user representations, we constructed dual networks
(i.e., AY and AP) where we treated users as vertices and their online and offline
pairwise relationships as edges. In particular, we leveraged the pairwise similari-
ties based on Equation (1) to stand for the relationships.

To quantitatively evaluate the community detection performance by different meth-
ods on dual networks, we adopted the following metrics:

(1) The normalized Davies-Bouldin index (ndbi) [Davies and Bouldin 1979] measures
the uniqueness of clusters with respect to the unified similarity measure [Liu et al.
2012; Cheng et al. 2013; Zhou and Liu 2013],

C . d(c;,cj)+d(c;.c;)
Zi:l min;; o;+o;+d(e;,¢;)+d(c;,¢;)

C )

ndbi(P) = (27

Thttps://www.ntu.edu.sg/home/gaocong/datacode.htm.
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where ¢; is the centroid of community P; € P, d(e;, ¢;) is the distance between
centroids ¢; and c;, and o; is the average distance between elements in P; and
centroid c¢;. A higher ndbi value indicates a more cohesive community.

(2) The silhouette index (sil) [Rousseeuw 1987] validates clustering performance based
on the pairwise difference of between- and within-cluster distances [Liu et al. 2010;
Cheng et al. 2013],

sil(P) = ol ; P Z max{b(w), aw)} | ° .

uep;

where a(w) = 15 ¥ \ep, iz A, v) and b(w) = min,i(A ¥,cp, d(, v). A higher
sil corresponds to a better clustering result.

(3) Normalized mutual information (nmi) [Nguyen and Caruana 2007; Li et al. 2014],
as a consensus metric, gives the mutual information between online and offline
clustering results normalized by the cluster entropies [Kumar et al. 2011; Nguyen
and Caruana 2007; Ni et al. 2015; Cheng et al. 2013]. We utilized it to measure
similarities of online and offline communities. As such,

DU PP
nmi(pv. ppy — PN PR) 29)

~H(PY)H(PP)
where mi(P?, PP) = ijzl P, j)log% denotes the mutual information be-

tween P' and P?, and H(P?) = — ZiC:1 P(@i)log P(i) represents the entropy of P’.

v v PP
We defined P(i) = &Nl and P(, j) = M. The value of nmi ranges between 0
and 1, with a higher value indicating a closer match between online and offline
clustering results.

It is noted that the solution of CLEVER is not unique, as the step size of our algo-
rithm is adaptive for different initialization values and global minimization cannot be
guaranteed. To study the sensitivity of our model to the initialization, we randomly
generated 10 different initialization values (i.e., G, and Gfo)) and then fed them into
our CLEVER model. For other competitors, the initialization procedure is analogous to
ensure a fair comparison. Thereafter, we performed paired ¢-tests between our model
and each of baselines over the 10-round results.

4.2. Parameter Tuning and Sensitivity

We have two implicit parameters, namely the number of communities C and the size
of social circle K, as shown in Equation (21). Since there is no prior knowledge of
community structures in EBSNs, we verified our models and all baselines with different
numbers of communities C € {20, 40, 80, 100, 150, 200, 250, 300}. Regarding the size of
social circle K, it plays a pivotal role in the local consistency term and affects the refined
Laplacian matrices as shown in Equations (13) and (17). In this work, we set various
sizes of social circle K € [10, 100] with step size 10.

Apart from the implicit parameters, we have two explicit parameters A; and g in
Equation (21). Grid search was adopted to select the optimal parameters between 102
to 102 with small but adaptive step sizes. In particular, the step size was set to 0.01,
0.05, 1, and 5 for the ranges [0.01, 0.1], [0.1, 1], [1, 10], and [10, 100], respectively. The
parameters corresponding to the best ndbi were used to report the final results. For
other comparing systems, the procedures to tune the parameters are analogous to
ensure fair comparison.
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Fig. 3. Illustration of parameter tuning over CA and NYC datasets by varying one and fixing the other.
The optimal setting of each parameter is marked by the red dotted line. We can see that the performance
regarding ndbi and nmi is nonsensitive near the optimal parameters.

Taking the tuning procedure over the CA dataset as an example, we observed that
our model reached optimal performance when A; = 0.15 and Ay = 95. Figure 3 illus-
trates the performance of our model over CA and NYC datasets regarding these two
parameters, respectively. Jointly analyzing the four subfigures, we can safely draw two
conclusions. First, the performance of our proposed model changes within small ranges
near the optimal settings justifies that our model is not sensitive to the parameters
around their optimal configuration. Second, the curves of ndbi and nmi have similar
trends, which further indicates that the consensus of online and offline networks has
an immediate impact on community detection.

4.3. Convergence Analysis

It is shown that the iterative solver of our proposed CLEVER, namely the curvilinear
search with Barzilar-Borwein step method, can guarantee the iterations to converge to
a stationary point [Wen and Yin 2013]. It therefore is a convergent monotone curvilinear
search algorithm.

Moreover, we recorded the values of the objective function in Equation (18) along
with the iteration times using the optimal parameter settings. Since each of the steps
in Algorithms 1 and 2 decreases the objective function that has a lower bound of 0, the
convergence of the alternating optimization is guaranteed [Gao et al. 2013b]. Figure 4
shows the convergence process with respect to the number of iterations.
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Fig. 4. Convergence process illustration of the CLEVER model on CA and NYC, respectively. We can see
that the most effective updates occurred in the first 20 iterations.

4.4. Scalability Discussion

Due to the increasing popularity of EBSNs, scalability has become a major concern
regarding community detection across dual networks. We hence discuss the computa-
tional cost of each iteration in our proposed model and illustrate its efficiency in this
section.

The computational cost in each iteration of Algorithm 2 mainly comes from three
parts:

(1) Computation of VF(W;): It is worth mentioning that the cost of the specific matrix

multiplication Gf”t)Gf’;)T and that of constructing the constant matrices 2" and U*?
remain the same for all iterations in the curvilinear search method. We thus can

save much practical time costs by caching the results. The complexity of VF(W;) is

O(N?C) since the matrix multiplication Gf;)G(’;)TW e

(2) Computation of A;: The time cost of A; is O(N2C).

(3) Computation of Y ;(tj): The speed bottleneck of computing Y ;(z;) lies in computing
the inversion of (I+ 5A ), which has the complexity of O(/V 3). We thus can estimate
the total cost for deriving Y;(z;) is O(N?).

To sum up, the computational complexity of our model is O(IN?3), which indeed reflects
the unsatisfactory scalability. However, using the method of Coppersmith and Winog-
ard, the cost can be bounded by O(N?376) [Zhai et al. 2012]. Although the computational
complexity of our algorithm is the major bottleneck, the scale of users involved into one
region or one local community cannot be very large in reality due to the restrictions
of the regional population capacity. According to the running time of different meth-
ods in Table II, we can see that the computational cost of our proposed CLEVER is
acceptable. Furthermore, we can implement a parallel and distributed version of our
algorithm to speed up it [Ghoting et al. 2011; Chierichetti et al. 2014]. For example, we
can distribute users within the same regions to the same compute node via MapReduce
and furthermore optimize the matrix multiplications in Algorithm 2.

We evaluated the scalability of our proposed CLEVER algorithm by varying the scale
of users in dual networks. As Figure 5 illustrates, CLEVER is efficient and capable of
handling relative large graphs with massive vertices in dual networks.

4.5. Overall Model Performance Evaluation

To justify the effectiveness of our proposed CLEVER model, we compared it to several
state-of-the-art competitors:
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Fig. 5. Scalability of the CLEVER model by varying the number of users over dual networks in CA and
NYC, respectively.

(1) PCAKM: K-means is a traditional clustering method for detecting communities [Qi
et al. 2012]. In this experiment, to boost performance and improve efficiency of
community detection, we first applied PCA on the original feature spaces and then
adopted k-means to partition online and offline networks, separately.

(2) SC: Spectral clustering [Ng et al. 2001] is one of the most popular modern clus-
tering algorithms, which can detect communities over a single network. In this
experiment, we separately employed this method on the standard online and of-
fline Laplacian matrices as shown in Equation (5).

(83) RMKMC: The novel and robust multiview k-means clustering method proposed
in Cai et al. [2013] is able to uncover the consensus pattern and detect communities
across multiple networks. We applied it on dual networks and obtained a shared
clustering result.

(4) MMSC: This multimodal spectral clustering method introduced in Cai et al. [2011]
learns a commonly shared graph Laplacian matrix by unifying different views,
where each modal stands for a feature type from one single view. We applied it on
dual networks and obtained a shared clustering result.

(5) CoNMF': CoNMF is a coregularized NMF model presented in He et al. [2014] that
extends NMF for multiview clustering [Liu et al. 2012]. It jointly factorizes the
multiple matrices through coregularization. We applied it on dual networks and
then obtained a shared clustering result.

Table II summarizes the performance comparison between our model and the base-
lines in terms of ndbi, nmi, and sil measures. It is worthwhile highlighting that
PCAKM, SC, and our model respectively output two partition results corresponding
to online and offline networks; nevertheless, the outputs of RMKMC, MMSC, and
CoNMF are shared unified partitions across dual networks. Due to the output nature,
not all methods can be measured by the three metrics. From Table II, we have the
following observations. First, with regard to the separate partition results over online
and offline networks, CLEVER achieves the best performance in terms of ndbi across
two cities. This clearly demonstrates that information encoded in different networks
is complementary and able to reinforce the separate partitions. Second, our proposed
model performs better than PCAKM and SC in terms of nmi, which considers all pos-
sible community matching between online and offline community detection results.
This justifies that our local and global consistency constrains are reasonable. Third,
our CLEVER model is superior to RMKMC, MMSC, and CoNMF models in terms of
ndbi and sil measures. To compare to them, we linearly fused the community detection
results of our model on online and offline networks. Noticeably, we are unable to fuse
the clustering results of PCAKM and SC, as it is hard to align their clusters across dual
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Table II. Performance Comparison Among Various Methods in Terms of ndbi, nmi, and sil
\ Method | PCAKM | SC | RMEKMC | MMSC [ CoNMF | CLEVER
Online (ndbi) 0.4700 + 2¢-5 | 0.4571 4 8¢-6 | 0.4472 + le-5 | 0.3886 +3e-4 | 0.4152+7e-5 | 0.4719 + 7e-6
Offline (ndbi) 0.4506 + le-4 | 0.4600 + 6¢-6 | 0.4732 + 2e-5 | 0.4102 + 5e-4 | 0.4424 + 5e-5 | 0.4756 + 8e-6
Online vs. offline (nmi) | 0.3844 + 3¢-5 | 0.3763 + 6e-6 1 1 1 0.4891 + 1e-3
CA [ Online & offline (ndbi) — — 0.4830 + le-5 | 0.4129 +4e-4 | 0.4399 + 7e-5 | 0.4937 + 6e-6
Online & offline (sil) — — —0.3790 = 4e-4 | —0.1228 + 3e-4 | —0.2569 + 2¢-4 | —0.1427 + 3e-3
Cputime 4.2993¢2 2.5074¢2 4.1844¢2 5.1466¢2 5.6756e4 472972
p-Value — — 2.7334e-6 4.5006e-17 2.1256¢-8 -
Online (ndbi) 0.4670 + 3e-5 | 0.4566 + Te-6 | 0.4463 + 6e-5 | 0.3726 + de-4 | 0.4475 + 5e-5 | 0.4736 + 7e-6
Offline (ndbi) 0.3297 + le-4 | 0.4620 & 2¢-5 | 0.4588 +7e-5 | 0.3741+5e-4 | 0.4536 +4e-5 | 0.4748 +8e-6
Online vs. offline (nmi) | 0.3375 + 1e-5 | 0.4335 + 1e-5 1 1 1 0.5536 + 5e-3
NYC | Online & offline (ndbi) — — 0.4705 + 6e-5 | 0.3856 + be-4 | 0.4669 + 4e-5 | 0.4940 + Te-6
Online & offline (sil) — — —0.3455 & 4e-4 | —0.1384 + 3e-3 | —0.2542 + 4e-4 | —0.1169 + 3e-4
Cputime 4.6399¢2 2.5966¢2 4.8520e2 4.8902¢2 5.9326¢4 5.1588¢2
p-Value — — 5.1240e-4 6.5857¢-8 2.7505-6 —

Note: We reported the results with variance on two cities (CA and NYC) with C = 300 and K = 20.
Thereinto, we illustrate the learning performance regarding various metrics over different networks, such
as denoting the performance withe respect to ndbi over the unified dual networks as “Online & offline
(ndbi).” The significance test is based on the ndbi over online and offline networks.

networks. Although RMKMC, MMSC, and CoNMF consider global consistency across
the networks, they ignore local consistency. This further confirms the importance of
local consistency in community detection over dual networks. Fourth, partition per-
formance over CA is stably better than NYC, which implies that online and offline
behaviors of CA citizens are more consistent.

In addition, we compared our method to all baselines by varying the number of
communities. As illustrated in Figure 6, our model significantly outperforms the other
baselines over the two cities with respect to sil and nmi. Meanwhile, our model can
achieve remarkable and comparable performance with regard to ndbi when C < 100
while showing its superiority with the increasing number of communities C. In addi-
tion, we analyzed the sensitivity of our model to the social circle size on the NYC data.
The results are demonstrated in Figure 7. It is observed that our model is nonsensitive
to the social circle size K. Moreover, we observed that the performance of unified com-
munity detection significantly outperforms these separate ones, and this observation
reflects the essential importance of unifying virtual and physical networks.

4.6. Componentwise Model Evaluation

The main insight of our proposed CLEVER model is to conduct dual clustering over
dual networks. Its significant features are to preserve global consistency of networks
and local consistency of social circles, as well as to refine the novel Laplacian matrices.
In addition, it enables two flexible community structures rather than one over dual
networks. Hence, to investigate the significance of each component, we employed the
componentwise model evaluation. In particular, we disabled some terms of our objective
function in Equation (21) as follows:

(1) Separate: To verify that the joint modeling indeed helps, we overlooked all consen-
sus terms by setting A1 = Ao = 0. Actually, the method is similar to SC, in which
we conduct spectral clustering over individual networks separately.

(2) Equal: In this method, we verified that the exactly equal community structures
somewhat degrease learning performance due to the overblown consensus. In par-
ticular, we set G = G?, which is equivalent to set A3 — 0.

(3) Global: In this method, we only considered global consistency over dual networks
by setting 11 = 0 in Equation (21).
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Fig. 6. Performance comparison among various methods by varying the number of communities C. The
partition performance over CA and NYC is respectively measured in terms of ndbi, sil, and nmi metrics.
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Fig. 7. Performance of the CLEVER model in terms of ndbi by varying the social circle size K on CA and
NYC. Thereinto, ndbi represents learning performance with regard to ndbi over online, offline, and unified
networks, respectively.
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Table Ill. Effectiveness Evaluation of Global Consistency, Local Consistency, and the Refined
Laplacian Matrix in Our Proposed CLEVER Model over Online and Offline Networks
of Meetup in CA and NYC When C = 300 and K = 20

\ Method | Separate | Equal | Global | TLocal [CLEVER-LM| CLEVER
Online (ndbi) 0.4610 + 8e-6 | 0.4669 + 6¢-6 | 0.4713 +3e-5 | 0.4715+4e-3 | 0.4643 + le-5 | 0.4719 + 7e-6
Offline (ndbi) 0.4621 + 6¢-6 | 0.4737 + le-5 | 0.4744 + 2e-5 | 0.4738 +6e-4 | 0.4738 +5e-6 | 0.4756 -+ 8e-6
CA Online vs. offline (nmi)| 0.4034 + 6¢-6 1 0.4030 + 6¢-6 | 0.4018 +7Te-4 | 0.4810+4e-2 | 0.4891 + le-3

Online & offline (ndbi) | 0.4785 £ 5e-6 | 0.4805 + 1e-6 | 0.4894 + le-4 | 0.4896 + le-5 | 0.4893 +9e-6 | 0.4937 + 6e-6
Online & offline (sil) [-0.1898 + 2¢-5|—0.2378 + 6e-5| —0.1979 + 5e-4| —0.1954 + 3e-4| —0.1701 + 8e-4 | —0.1427 + 3e-3

p-Value 3.1136e-6 7.1420e-7 1.3722¢-6 3.1496¢-6 3.9276¢-5 -
Online (ndbi) 0.4579 + 7e-6 | 0.4720 + le-4 | 0.4677 +8¢-6 | 0.4706 +2¢-5 | 0.4655+8e-6 | 0.4736 + Te-6
Offline (ndbi) 0.4616 + 2e-5 | 0.4733 +5e-5 | 0.4746 + 6e-6 | 0.4751+ 2e-4 | 0.4733 +6e-6 | 0.4748 + 8e-6
NYC Online vs. offline (nmi)| 0.4513 + 1e-5 1 0.4506 + 4e-4 | 0.4503 +5e-4 | 0.4889+6e-6 | 0.5536 + 5e-3

Online & offline (ndbi) | 0.4883 + 3¢-5 | 0.4900  4e-5 | 0.4905 + 5e-6 | 0.4910 +3e-5 | 0.4910+2e-5 | 0.4940 + 7e-6
Online & offline (sil) [-0.1258 + 1e-6|—0.1319 + 5e-5| —0.1584 + 4e-6] —0.1447 + le-4| —0.1284 + le-5 | —0.1169 + 3e-4
p-Value 1.3872¢-7 1.5607¢-5 9.2401e-5 7.366¢-6 5.1167¢-6 —

Note: We also provide the variance. The significance test is based on the ndbi over online and offline networks.

(4) Local: In this method, we only took local consistency over dual networks into con-
sideration. This is accomplished by setting Ay = 0 in Equation (21).

(5) CLEVER-LM: To verify the feasibility and efficacy of our refined Laplacian matrix
in Equation (17), we replaced it with the standard Laplacian matrix in Equation (5).

Table III displays results of the componentwise evaluation of the CLEVER method.
From the table, we can make the following observations. First, no matter what type of
consistency terms we dropped, it hurt the performance of our model. This verifies the
importance of global and local consistency over dual networks. Second, the Separate
method achieves the worst performance. This signals that the joint modeling plays a
pivotal role, which can effectively transfer the underlying information between two net-
works. Third, meanwhile, the Equal method has poor performance. It verifies that the
exactly equal structures somewhat overemphasize the consensus and overlook the flex-
ibility. Fourth, CLEVER-LM can obtain the comparable performance regarding ndbi.
However, its clustering quality is worse in comparison with CLEVER. This confirms
that the refined Laplacian matrices are more suitable than the standard ones. It hence
verifies the effectiveness of the exploited manifold structures of social circles. We can
therefore draw a safe conclusion that jointly modeling global and local consistency with
the refined Laplacian matrices are beneficial to user contextualization and community
detection over dual networks.

5. APPLICATION

Aside from the general validation, we also validated our model on a real-world problem:
event attendance prediction [Liu et al. 2012; Foley et al. 2015]. Formally, given an
event, a small set of early bird registers, a whole set of attendee candidates, and
their online interaction records, we aim to predict who will probably attend this event
and how many users will be present eventually. A good approach to this problem will
remarkably facilitate a wide range of event organizers, such as workshop initiators,
conference logistics chairs, and even presidential election committees, by enabling them
to design better proactive coping strategies in advance.

However, it is nontrivial to predict attendance of the given event due to the following
reasons. First, we have the micro factor, in which individual behaviors are often affected
by one’s social interactions [Cui et al. 2011]. To be more specific, if one’s close friends
confirm to attend a coming event, there exists a better than average chance that he
or she will show up as well. Second, we have the macro factor, in which communities
are usually interest driven [Ronen et al. 2014]. If the given event matches the taste of
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one community, the users within the community have higher probabilities of attending
the event than those from unmatched communities. For instance, researchers from
the data mining community prefer participating in the SIGIR conference over the
SIGGRAPH conference. Moreover, traditional classifiers, such as SVM, suffer from
insufficient training samples (i.e., usually, only a few early birds are available for a
given event), and then they are hard to capture the information propagations among
users. In this work, we adapted our CLEVER model to solve this problem, as it is able
to uncover an optimal and cohesive community structure among users.

5.1. Experiments

5.1.1. Experimental Settings. Given a happened event e, we can build the ground truth
by collecting its real attendees U = {u1, ..., un,}, where N, stands for the number of
users attending e. To simulate the real case, we randomly selected M attendees from U/
to construct the set M, who act as early bird registers. Based on the partition results of
our model, assume that user u; is assigned into the c-th community, which holds a set
of members P.. We can estimate the probability of user u; attending event e by jointly
considering the macro and micro factors as follows:

p(ui|M’ Pe) = pmacro(ui|M, P.) x prm'cro(ui|M, P.)
_ (i |PcM|) « <Zuje’PcM sim(ui, u,))

[Pel IM] [Pe.ml
s sim(u;, u;)
_ Z /€7)c,M J , (30)
[Pe| x |M]
where P.y = P. N M denotes the attendees from the c-th community, and

Pracroi | M, Pe) and ppycro(u;| M, P.) denote the probability of u; attending the event
affected by the public environment and his or her social connections.

5.1.2. Event Attendance Prediction Evaluation. To measure the effectiveness of event at-
tendance prediction from different angles, we adopted two widely used metrics. One is
F'1 [Li et al. 2014; Song et al. 2015a, 2016]:

_, precision -recall

F1=2 — ; (31)
precision + recall

the other is normalized mean squared error [Zhang et al. 2016b; He et al. 2016]:

>N (pred, — real, )
N x pred x real

where N, pred,, real,, pred, and real denote the number of testing events, the number of
predicted attendees, the number of real attendees for event e, and the average number
of predicted and real attendees, respectively.

We chose RMKMC, MMSC, and CoNMF as the baselines, as they output unified
partition results over dual networks. Performance comparison in terms of F'1 and
nMSE are reported in Tables IV and V, respectively. From Table IV, we observe that
our model stably outperforms the baselines on two cities with different numbers of
early bird registers. This actually reflects that the remarkable improvement of our
model in predicting whether a user will attend the given event is much stronger. In
other words, our model shows superiority in predicting who will attend the desired
events in most cases. Table V illustrates that the number of predicted attendees by
our model is much closer to the number of real attendees compared to other methods.
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Table IV. Performance Comparison of Event Attendance Prediction Among Various Methods in Terms of
F1 score by Varying the Number of Early Bird Registers, {10, ..., 50}, for the Given e

Method | RMKMC | MMSC | CoNMF [ Separate | Equal | CLEVER |

IMI=10 | 0.1587+4e-4 | 0.1103+6e-5 0.1372 + 9e-5 0.1619+ 1e-5 | 0.1623+2e-5 | 0.1832+ 7e-4

M| =20 | 02810+1e-6 | 0.2023 +6e-5 0.2220 + 2e-4 02244 £ 1e-5 | 0.2462+4e-5 | 0.3216+ 2e-3

IMI=30 | 0.3290+5e-5 0.2725 + 1-4 0.2737 + de-4 0.2643 +2-5 | 0.4126+5e-5 | 0.4252+3e-3

CA M| =40 | 0.3530+8¢-5 | 0.3208+2-4 | 03101+2-4 | 03638+2-4 | 04874+7Tc-4 | 04968 +5e-3
M| =50 | 04719+6e-5 | 04615+ 1le-4 | 04316+5e-4 | 04289+2-4 | 05055+2-4 | 05639+ 6e-3
p-value 2.3881e-3 2.6238¢-5 1.0288¢-5 2.8812¢-3 2.300e-2 —
IM|=10 | 0.1501+2-6 | 0.1253+5e-5 | 0.1126+1le-4 | 0.1515+6e-6 | 0.1502+9-6 | 0.1551 +3e-5
M| =20 | 02625+2-4 | 02094+6e-5 | 0.1936+le-4 | 0.2414+2-5 | 0.2404+6e-5 | 02743+ 2e-4
NYC | _MI=30 [ 03527456 | 02512+4de-5 | 02439+ 14 | 03501+le-d | 03841led | 03662:+8e-d
M| =40 | 04125+5e-5 | 03775+4-5 | 0.38801+9-5 | 0.3823+2-4 | 04420+ le-4 | 0.4498 +1e-3
M| =50 | 04279+2-6 | 04104+2-5 04289 £ 4de-4 | 04064 +4de-4 | 04526+2-4 | 05046+ 1e-3
p-value 3.4562¢-2 2.2938¢-8 5.4205¢-7 5.0421e-3 2.8812¢-3 —

Note: We reported the results with variance on two cities (CA and NYC) with C = 300 and K = 20. The
significance test is based on the F'1 score at | M| = 50.

Table V. Performance Comparison Among Various Methods for the Number of Attendees Prediction
\ | Event ID | Real Attendees(#) | RMKMC | MMSC | CoNMF [ Equal | Separate | CLEVER

1 108 44 20 112 38 37 107
2 85 77 18 127 73 61 98
3 105 69 19 106 63 49 70
CA
4 86 44 12 116 38 50 81
5 82 44 10 150 64 56 111
nMSE — 0.3344 41138 0.1283 0.3668 0.4548 0.0511
6 113 46 44 130 37 49 106
7 119 132 48 189 54 42 123
NYC 8 120 138 39 171 65 39 134
9 120 100 42 170 41 49 164
10 116 75 37 196 47 47 139
nMSE — 0.1223 1.1616 0.1658 0.8374 0.9929 0.0348

Note: For each event listed, the number of early bird registers is 20.

Hence, our model achieves significant improvements in predicting how many attendees
will be present eventually.

6. CONCLUSION AND FUTURE WORK

In this article, we present a novel dual clustering model for community detection over
dual networks, which are an abstract expression of EBSNs in nature. This model is able
to enhance network partition performance by integrating online and offline interactions
among users and preserving local and global consistency across networks. In addition,
it strengthens the model by an improved Laplacian definition. We have theoretically
derived its solution. The model and its components were verified on two real-world
datasets. Meanwhile, we applied our model to the application of event attendance
prediction. It is worth emphasizing that our model is applicable to other applications,
such as group recommendation and event suggestion.

In the future, we plan to extend our model to handle multiple networks instead of
dual networks.
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