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ABSTRACT
On the shoulders of textual dialog systems, the multimodal
ones, recently have engaged increasing attention, especially in
the retail domain. Despite the commercial value of multimodal
dialog systems, they still suffer from the following challenges:
1) automatically generate the right responses in appropriate
medium forms; 2) jointly consider the visual cues and the
side information while selecting product images; and 3) guide
the response generation with multi-faceted and heterogeneous
knowledge. To address the aforementioned issues, we present
a Multimodal diAloG system with adaptIve deCoders, MAGIC
for short. In particular, MAGIC first judges the response type
and the corresponding medium form via understanding the
intention of the given multimodal context. Hereafter, it employs
adaptive decoders to generate the desired responses: a simple
recurrent neural network (RNN) is applied to generating general
responses, then a knowledge-aware RNN decoder is designed
to encode the multiform domain knowledge to enrich the
response, and the multimodal response decoder incorporates an
image recommendation model which jointly considers the textual
attributes and the visual images via a neural model optimized
by the max-margin loss. We comparatively justify MAGIC over a
benchmark dataset. Experiment results demonstrate that MAGIC
outperforms the existingmethods and achieves the state-of-the-art
performance.
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1 INTRODUCTION
With the development of big data and deep learning techniques,
we have witnessed the rise of dialog systems in recent years.
Generally speaking, dialog systems can be categorized into two
groups: open-domain and task-oriented dialog systems. The
former is able to chat with users on a wide range of topics
without domain restrictions, like chit-chat; whereas the latter
satisfies users’ specific requests in certain vertical domains, such
as accommodation booking. They both have shown promising
commercial value in many fields, spanning from the companion
chat (e.g., XiaoIce1) to customer services (e.g., Cortana2 and Siri3).
Despite their progress, most of the existing efforts purely focus on
the textual conversation between users and chatbots, overlooking
the important visual cues. As the old saying goes, “a picture
is worth a thousand words”, namely a picture can often vividly
express the intentions. As displayed in Figure 1, the user describes
his preferred sandals through a product picture, which remarkably
facilitates the user to express requirements and enables the chatbot
to understand the appearance of products clearly. Inspired by
this, seamlessly integrating the visual images into the traditional
textual dialog systems, the so-called multimodal dialog systems,
deserves our attention.

In this paper, we work towards a task-oriented multimodal
dialog system, which undoubtedly relies on the support of large-
scale and domain-aware datasets. As a leading study, Saha et al.
[30] released a multimodal dialog dataset (MMD) in the retail
domain. Along with this MMD benchmark dataset, the authors
presented two basic tasks, namely the textual response generation
and the best image response selection, which are implemented by a
multimodal hierarchical encoder-decoder (MHRED) model. On the
basis of MHRED model, Liao et al. [21] incorporated the style tips
into the neuralmodel by aMemoryNetwork [32] and adopted deep
reinforcement learning to maximize the expected future reward.
As a result, the knowledge-awaremultimodal dialog system (KMD)

1https://www.msxiaobing.com.
2https://www.microsoft.com/en-us/cortana.
3https://www.apple.com/siri.
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Greeting

Give criteria

Hi, there.

Hello, what I can help you with today ?

I am keen on buying floaters made in TPR suede 
leather for myself, just like this one.

Regarding the 4th one, flaunt an effortless look as you 
adorn this pair of sandals by Bacca Bucci ...

Yes, T-shirt will go well with these sandals.

Good! let me take a quick scan through my catalogue.

Multimodal response

Knowledge-aware response

General response

Ask for style-tip

Will T-shirt complement any of these?

Figure 1: A multimodal dialog system between a shopper
and a chatbot. The shopper expresses his requirements step
by step as the dialog goes on. And the chatbot generates
different responses according to the context.

achieves better performance as compared to MHRED over two
basic tasks, respectively.

Although existing task-oriented multimodal dialog systems
have shown promising performance, they still suffer from the
following issues: 1) As illustrated in Figure 1, the responses from
the chatbot express various information in differentmedium forms,
ranging from greetings and visual demonstration to informative
explanation, which are demonstrated in either texts or text-image
combinations. Pioneer efforts treat text generation and image
selection in the multimodal dialog systems as two separate tasks,
and generate the responses by selectively assembling the texts
and images manually. 2) The image selection task is essentially
a product recommendation problem. Recommenders rank the
products and return the top ones according to the user’s preference
conveyed in the context. Existing methods, such as MHRED
and KMD, only consider visual images during the selection,
totally ignoring the rich side information associated with the
products, such as the price, material, size, and style. And 3)
as shown in Figure 1, the conversations between the shopper
(user) and the chatbot usually involve multiform knowledge in
heterogeneous facets, including style tips, product attributes, and
product popularity in celebrities. Nevertheless, the KMD method
only incorporates the style tips into the neural model and the
MHRED one does not explore any kinds of knowledge at all.

Indeed, it is tough to alleviate the aforementioned issues due
to the following challenges: 1) Given the multimodal context, we
have to determine what type of responses should be generated in
advance and then present them in appropriate medium forms. 2)
Jointly considering the product images and their side information
to select the most relevant products is very necessary, however, it
has been untapped adequately to date. And 3) the multi-faceted
knowledge are heterogeneous. For example, style tips are usually
organized as a graph, whose edges describe the relations among
different products; while the product popularity in celebrities

always appears as a popularity distribution histogram, and the
product attributes are actually organized into a key-value table.
How to encode multiform knowledge within a unified decoder is
an unsolved problem.

To address the aforementioned challenges, in this work, we
present a Multimodal diAloG system with adaptIve deCoders,
MAGIC for short, as illustrated in Figure 2. To be more specific, our
proposed MAGIC model first embeds the historical utterances via
a multimodal context encoder. It then understands users’ diverse
intentions conveyed in the multimodal context by classifying
them into 15 categories, such as greeting, giving criteria, and
purchasing. According to our statistics over the MMD dataset,
responses to these 15 kinds of intentions are in three variants
without exception: general responses in texts, knowledge-enriched
responses in texts, and the multimodal responses in the form
of texts and images. In the light of this, MAGIC automatically
judges the response type and its corresponding medium form by
looking up our pre-defined tables with triplet entries (Intention
Category, Response Types, Medium Forms). Hereafter, MAGIC
employs the adaptive decoders to generate the desired response
types, whereby the input of the decoders is the embedding of
the historical utterances. In particular, 1) a simple recurrent
neural network (RNN) is applied to generating general responses;
while 2) a knowledge-aware RNN decoder embeds the multiform
domain knowledge into a knowledge vector in a high-dimensional
space via the Memory Network [32] and the Key-Value Memory
Network [26], and then the knowledge vector is incorporated
into a unified RNN decoder to produce more knowledge-enriched
responses. And 3) the recommender model learns the product
representations by jointly considering the textual attributes and
the visual images via a neural model optimized by the max-margin
loss. Ultimately, the recommender ranks the product candidates
based on the similarity between the product representation
and the embedding of the historical utterances. It is worth
noting that since the multimodal responses are very complex
and sophisticated, mixing general responses, domain knowledge,
and visual illustration, they hence integrate the outputs of the
simple RNN decoder, the knowledge-aware RNN decoder, and
the recommender, simultaneously. Extensive experiments on the
MMD dataset demonstrate the superior performance of MAGIC
over the baselines. And we release our code and data4 to facilitate
the research in this field.

To sum up, the contributions of our work are threefold:
• In the family of multimodal dialog systems, we are the
first to judge the response type and its medium form. It is
achieved by an intention understanding component, which
enables us to automatically generate the context-adaptive
responses in appropriate medium forms.

• We incorporate a novel product recommender into the
multimodal dialog systems, which jointly characterizes the
visual and side information of products. It is also applicable
to recommend multimodal items in other fields.

• We design a multiform knowledge-aware response decoder,
encoding various forms of domain knowledge within a
unified decoder.

4https://acmmultimedia.wixsite.com/magic.
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Figure 2: Schematic illustration of our proposed MAGIC model.

2 RELATEDWORK
This work is closely related to the textual dialog systems,
multimodal dialog systems, and conversational recommender
systems.

2.1 Textual Dialog Systems
In recent years, great efforts have been dedicated to developing
textual dialog systems, including open-domain and task-oriented
dialog systems. The former is usually implemented by template-,
retrieval- or generation-based methods. To be more specific, the
template-based methods leverage predefined rules and templates
to reply to users [36]. They are, however, prone to frequent errors
as the results are not always the desired ones. As to the retrieval-
based models [38, 41–43], they select proper responses for the
current conversation from a repository via response selection
algorithms, benefiting from informative and fluent responses. By
contrast, the generation-based ones [17, 35] produce more proper
responses that have never appeared in the corpus by automatically
predicting the generation probability of each word in the response
based on the historical context. For example, Serban et al.
[31] extended the recurrent hierarchical encoder-decoder (HRED)
neural network to generate responses. Attention mechanism [2] is
also incorporated into the generation-based methods to improve
the performance [25, 44]. In addition, leveraging the external
knowledge with deep neural models to retrieve or generate
responses has been a promising research direction [40, 43]. For
example, Yang et al. [43] proposed a deep neuralmatching network,
which leverages the external knowledge for response ranking in
information-seeking conversation systems. Another example is
illustrated in [12], whereby a knowledge-ground generation-based
model employs the external non-conversational data to produce
more informative responses.

Different from open-domain dialog systems that chat with users
without domain restrictions, task-oriented [4, 37] ones focus on
assisting users to accomplish specific tasks in vertical domains.
Traditional task-oriented dialog systems follow a typical pipeline.
They first utilize a natural language understanding component to
classify the users’ intentions. And then the dialog state tracker
tracks the users’ requirements and fills the predefined slots. It
is followed by the policy network that decides what action to
make at the next step. Ultimately, the natural language generation
component gives the response through the predefined templates
or some generation-based models. Though this pipeline has

performed well in certain tasks, it still suffers from the complex
framework and the error propagation [16, 21, 27]. To alleviate
such problems, several end-to-end task-oriented dialog systems
[3, 19, 29, 37], integrating the advantages of supervised learning
and deep reinforcement learning methods, are proposed. Besides,
they [14, 29, 37] also incorporate domain knowledge into dialog
systems by issuing a symbolic query in a structured knowledge
base (KB) [19] or estimating the “soft” posterior distribution over
the KB [9]. However, all these task-oriented methods only focus
on the textual dialog and totally ignore the visual cues.

2.2 Multimodal Dialog Systems
Although the textual utterances convey valuable information, they
are limited in describing the visual properties in many cases [6, 21–
23]. With the development of many industrial domains, such as
e-commerce retail and travel, the demand for multimodal dialog
systems is increasing rapidly. In fact, the release of MMD dataset
[30] has promoted the development of multimodal dialog systems.
Saha et al. [30] also proposed two basic tasks alongwith the dataset:
the textual response generation and the best image response
selection. Meanwhile, they developed MHRED model regarding
these two tasks. Later, Liao et al. [21] presented the KMD model,
extracting the visual representation using Exclusive&Independent
tree [20], incorporating style tips provided in [30] into the
MHRED, and leveraging deep reinforcement learning to boost the
performance. However, MHRED and KMD consider the product
recommendation as an image selection task, which only leverages
visual features and overlooks the side information of products.
Moreover, they neglect other forms of domain knowledge required
in the retail domain, such as product attributes and popularity.

In addition to multimodal dialog systems, visual question
answering (VQA) [1, 13] and visual dialog [7, 8] are also somehow
related to our work. VQA is an emerging problem in computer
vision and natural language processing that has engaged a large
amount of interest from various communities of the deep learning,
computer vision, and natural language processing. In VQA, an
algorithm needs to answer text-based questions about images.
Since the release of the first VQA dataset [1] in 2014, additional
datasets [24] have been released and many algorithms [13] have
been proposed. Different from VQA that only consists of a single-
round natural language interaction, visual dialog [7] requires the
agent to conduct a meaningful dialog with humans in natural
language regarding the visual content. Specifically, given an image,



a dialog history, and a question about the image, the agent has to
understand the question about the image, infer the context from
history, and ultimately answer the question in natural language.
By comparison, multimodal dialog systems encode the multimodal
dialog history with many images, and integrate the utterances in
multiple medium forms to interact with humans at every turn.

2.3 Conversational Recommender System
Research on conversational recommender systems is compara-
tively sparse. Considering the success of recommender systems in
helping users find the preferred items, integrating the strength of
recommendation methods into the dialog systems to serve users
has much commercial value. In the former efforts [5, 18, 33],
the chatbots usually continue to propose predefined questions in
the conversation until they collect enough information to make
a recommendation. Many slots are defined manually in most
existing methods [5, 33] to characterize the products, such as
prize and location. Thereafter, the methods extract the values
of these slots from the users’ feedback. For example, Sun et al.
[33] selected five item attributes as slots for the food in the
Yelp challenge recommendation dataset5 and generated dialog
scripts to train the proposed Conversational Recommender System.
Whereas, all these conversational recommender systems merely
focus on textual dialog and product information, totally ignoring
the significance of the massive visual cues in the recommendation.

3 OUR PROPOSED MAGIC MODEL
This section details our proposed MAGIC model, which can
embed the multimodal context, understand users’ intention,
and adaptively generate the responses for users in appropriate
medium forms. As shown in Figure 2, given the multimodal
context {u0,u1, ...,un }, where each utteranceui consists of several
textual sentences, or integrates textual sentences and visual
images, MAGIC first leverages a context encoder to embed the
multimodal context into a context vector c, and then understands
the user’s intention via classification. To generate multiform
responses for various user intentions, we leverage three parallel
components (i.e., Simple RNN Decoder, Knowledge-aware RNN
Decoder, and Recommender) to produce three types of responses:
general responses, knowledge-aware responses, and multimodal
responses. It is worth noting that general responses refer to the
highly-frequent responses in the conversations, which smooth
the conversation without any practical information, for example,
“What can I help you with today?” As to the knowledge-aware
responses, they are the responses incorporated with multiform
domain knowledge to satisfy users’ specific demands, such as
responses to the question “Will T-shirt match any of these sandals?”
In addition, multimodal responses comprise a general response
in courtesy, the visual images of recommended products, and a
knowledge-aware response to introduce the product attributes.

3.1 Context Encoder
To encode the multimodal context {u0,u1, ...,un }, we design a
deep hierarchical neural model as illustrated in Figure 3. To be
more specific, at the low level, a RNN is used to encode the
5https://www.yelp.com/academic_dataset.
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Figure 3: Context Encoder by a hierarchical neural model.
textual utterance word by word and a ResNet [15] augmented
with soft visual attention [39] is employed to extract the visual
feature of products. As to the high level, the textual features or
the concatenation of textual and visual features is fed into the
sentence-level RNN in every utterance. Notably, the utterance
could be either textual or multimodal, therefore, the high-level
RNN sometimes only takes textual features as inputs.

Specifically, the textual utterance is encoded by a low-level
RNN, and the final hidden state ht, embedding the information in
the whole utterance, is treated as the representation of the input
textual utterance. As for the visual feature extraction, considering
that the users’ visual attention on image regions differs, we
leverage the soft visual attention to attentively extract visual
features, which has shown its effectiveness in several cross-modal
tasks, such as image captioning [39]. In particular, the feature
map of ResNet is divided into L regions; meanwhile, the final
hidden state ht of the low-level RNN describing the users’ current
requirements for products, such as the color or size preference, is
used to decide what the model should pay attention to. Formally,
the attention weight α ti for each region at the time step t is
calculated by,

e ti = fatt (ht, vti), α ti =
exp(e ti )∑L
j=1 exp(e tj )

, (1)

where ht is the final hidden state of the low-level RNN at the time
step t , vti refers to the visual feature of region i at the step t , the
function fatt is implemented by a Multi-Layer Perceptron (MLP)
in this work and α denotes the attention weighs over the visual
features of L regions. Thereafter, the visual feature vt at the step t
can be obtained as follows,

vt =
L∑
i=1

α ti v
t
i . (2)

Note that for multimodal utterances, the visual feature vt and
the textual one ht are concatenated first, and then fed into the
high-level RNN. And if an utterance consists of several images, the
images will be unrolled into a sequence of visual utterances and
fed into the high-level RNN with textual features one by one. As
for utterances of mere texts, only textual features are calculated at
the high level. Therefore, from a high-level perspective, the RNN
iteratively processes the utterances, characterizes the user-related

https://www.yelp.com/academic_dataset.


Table 1: The categories of users’ intentions and their corresponding responses in different medium forms.
Id Intention Category Response Type Medium Form Id Intention Category Response Type Medium Form
1 greeting general response Text 9 filter results multimodal response Text+Image
2 give self-info general response Text 10 ask for style tips knowledge-aware response Text
3 give criteria multimodal response Text+Image 11 ask for attributes knowledge-aware response Text

4 like specific items,
show more multimodal response Text+Image 12 ask for popularity

in celebrities knowledge-aware response Text

5 dislike specific
items, show more multimodal response Text+Image 13 switch back to

former items general response Text

6 show orientations
of products multimodal response Text+Image 14 buy general response Text

7 show similar items multimodal response Text+Image 15 exit general response Text
8 sort results multimodal response Text+Image

information in the dialog step by step, and ultimately outputs
the final hidden state as the context vector c. Thereafter, the
context vector c will be fed into the intention understanding, the
recommender and two RNN decoders as the multimodal context
representation.

3.2 Intention Understanding
Given the context vector, this component aims to understand
the users’ intention and thereafter to decide the corresponding
decoder for response generation. In particular, the intention of
users in the MMD dataset can be classified into 15 categories as
summarized in Table 1. Here, we leverage the MLP network to
predict the probability distribution over the 15 intentions based
on the context vector c generated by the context encoder. Besides,
a cross-entropy loss is applied to optimizing the network, and
ultimately the model achieves superior accuracy up to 98.9%.

As aforementioned analyses over the MMD dataset, we
noticed that the responses to these 15 intentions can be
exclusively divided into three types, namely general response,
knowledge-aware response, and multimodal response. Thereinto,
the multimodal response is expressed in both texts and images;
whereas the others are only in texts. Inspired by this, we
design a lookup table, containing many triplets in the format
of (intention cateдory, response type,medium f orm). Once given
the intention category of the multimodal context, our model
MAGIC can select the right decoder to generate the corresponding
responses in appropriate medium forms.

3.3 Simple RNN Decoder
The objective of the simple RNN decoder is to generate general
responses based on the context vector c, which are common in the
MMD dataset and do not need any domain knowledge. As utilizing
knowledge-aware RNN decoder to produce general responses may
bring additional computing burden, incorporate noise and mislead
the optimization of the model, we introduce the simple RNN to
generate general responses separately. The hidden state h0 of the
simple RNN is initialized by the context vector c, and then updated
iteratively by the following equation,

ht = f (ht−1, ewt−1 ), (3)

where ht refers to the hidden state at the step t , and ewt−1
denotes the embedding of the token wt−1 in the target response.
Thereafter, themodel linearly projects the hidden state at each step
to a one-dimensional vector in the vocabulary size and outputs
the probability distribution of every token. Eventually, the cross-
entropy error function is applied to maximizing the prediction
probability of sequential tokens in the target response.

T shirt

sandals messenger 
bag

cap

shorts

Name
Material
Color
Gender
...

sandals
leather
olive
men
...

Field Value

Yes<st> gowill well

Knowledge base

Read

with ., T-shirt these sandals

P
as

si
o

n
 f

o
r 

sa
n

d
a

ls

celebrities

Context Vector

Style tips Graph Celebrities Histogram Attributes Table

query q
knowledge vector k

Figure 4: Multiform knowledge-aware RNN Decoder.

3.4 Knowledge-aware RNN Decoder
In the MMD dataset, the shoppers tend to express their
requirements and collect enough product information before the
final purchase. The product information usually involves three
kinds of domain knowledge, namely style tips, product attributes,
and the product popularity among celebrities. To be more specific,
1) style tips describe the matching status between different clothes,
such as neckties going well with white shirts; 2) product attributes
are organized in a key-value table to record the common attributes
of products, such as prize, brand, and material; and 3) as to the
product popularity among celebrities, it presents the preference
distribution of celebrities over all kinds of products. For example,
some celebrities favor black trousers instead of blue ones. Based
upon the intention understanding results, as summarized in Table
1 (ID 10, 11 and 12), MAGIC can easily determine what kind
of domain knowledge to incorporate. Specifically, if the user’s
intention is to query style tips, product attributes or product
popularity in Table 1, MAGIC will embed the corresponding
domain knowledge into a knowledge vector and incorporate it into
the RNN decoder.

Formally, the knowledge-aware RNN is initialized by the
context vector c and updated as follows,

st = f (st−1, [ewt−1, a, k]), (4)

where st refers to the hidden state of the knowledge-aware RNN
decoder at the step t , and [ewt−1 , a, k] is the concatenation of
the embedding of the token wt−1 in the response, the attentive
context vector a, and the knowledge vector k. Specifically, due to
the close correlation between the last contextual sentence and the
target response, we introduce the context vector a to attentively
combine the hidden states of the last contextual sentence via
the attention mechanism. In particular, the hidden state st−1 is
utilized to calculate the attention weights by inner product, and
then the weighted hidden states of the last contextual sentence



are linearly added together to get the attentive context vector a.
Besides, the knowledge vector k is acquired from the multiform
knowledge base by leveraging the hidden state at the previous step
as the query q. Notably, the knowledge vector k at the first step is
acquired by using the context vector c as the query q and the first
word fed into the RNN decoder is a special token <st>. Given the
query q, the following subsections will demonstrate how to embed
three kinds of knowledge into the same high-dimensional space,
respectively.

3.4.1 Incorporation of Style Tips. The style tips in the retail
domain naturally appear as an undirected graph and the edge
between two kinds of products implies that one goes well with
the other. Therefore, we can describe the graph with pairwise
entries, such as (T -shirts, sandals), and then we incorporate the
pairwise entries into the RNN decoder by a Memory Network [32].
In particular, we first embed each item of the pair into a vector and
thereafter concatenate them to obtain a knowledge entry e. Finally,
all these knowledge entries are stored in the single-layer Memory
Network. Given the query q, the knowledge vector k is computed
by, 

mi = Aei,

oi = Bei,

pi =
exp(qTmi)∑N
j=1 exp(qTmj)

,

k =
N∑
i=1

pioi,

(5)

where ei denotes the knowledge entry and N is the number
of knowledge entries. In addition, A and B are the embedding
matrices in the Memory Network, which convert the input ei into
the memory vector mi and the output vector oi, respectively.

3.4.2 Incorporation of Product Attributes. As for the product
attributes, we apply the Key-Value Memory Network to acquire
the knowledge vector k since the attributes are always pre-
sented as key-value pairs {(k1,v1), (k2,v2), ..., (kM ,vM )}, such
as (material , leather ). Formally, the knowledge vector k can be
calculated on the basis of query q by the following equations,

pi =
exp(qTki)∑M
j=1 exp(qTkj)

, k =
N∑
i=1

pivi, (6)

where ki and vi are the embeddings of the key and value of the i-th
attribute, respectively. Meanwhile,M is the number of attributes.

3.4.3 Incorporation of Product Popularity. Supposing that there
are Nc celebrities and Np kinds of products included in the given
data corpus, the product popularity among the celebrities can be
expressed as a matrix P ∈ RNc×Np , where each row denotes a
passion distribution of one celebrity over the Np kinds of products.
We treat the passion distribution of one celebrity as a knowledge
entry e and store Nc knowledge entries in the Memory Network.
Thereafter, the acquisition of the knowledge vector k is similar to
the incorporation of style tips.

3.5 Recommender
Given the context vector c, Npos positive products, and Nneд
negative ones, the recommender will rank the product candidates
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Figure 5: Illustration of the proposed recommender.

based on the similarity between the context vector c and the
product representation y. Different from the existing methods that
rank product images by simply considering the visual features,
we jointly incorporate both the visual features and the side
information into the recommender. As shown in Figure 5, the
product attributes and images are both fed into the product
encoder to learn the product representation y. In particular, for
each product image, we first arrange its keys in alphabetical order,
and then represent each pair by concatenating its key and value
embeddings into one vector. Following that, we feed the ordered
pairs into a RNN model step by step. The hidden state of the last
step is regarded as the representation of textual attributes; whereas
the visual representation is extracted by the pre-trained ResNet.
Eventually, the textual and visual representations are concatenated
and then linearly projected into the same high-dimensional space
with the context vector c. Amax-margin loss is adopted to optimize
the model for better recommendation, formulated as,

ℓ =max (0, 1 − Sim(c, ypos) + Sim(c, yneg)), (7)

where ypos and yneg refer to the representations of positive and
negative products, respectively, and the function Sim(x, y) denotes
the cosine similarity between x and y. When training the model,
we minimize the max-margin loss ℓ to optimize the parameters;
whereas at the test period, the recommender ranks the product
candidates based on the similarity between the context vector c
and the product representation y.

4 EXPERIMENTS
4.1 Dataset
To build task-oriented multimodal dialog systems, we utilized
the MMD dataset in the retail domain to train and evaluate our
proposed model MAGIC. The MMD dataset consists of over 150k
conversations between users and chatbots, and each conversation
comprises approximately 40 utterances. Among them, every user’s
utterance in the conversation is labeledwith one of the 15 intention
categories. And over 1 million fashion products with a variety
of domain knowledge were crawled from several well-known
online retailing websites, such as Amazon6 and Jabong7. Different
from MHRED and KMD that utilize the fixed visual features of
products obtained from the FC6 layer of the VGGNet-16 in [30], we

6https://www.amazon.com/.
7https://www.jabong.com/.

https://www.amazon.com/.
https://www.jabong.com/.


crawled the original pictures of these products from thewebsites to
facilitate the extraction of visual features. Similar to MHRED and
KMD, we treated every utterance of chatbots in the conversations
as a target response and its former utterances as the context. Apart
from that, we classified them into three types of responses to train
the corresponding decoders separately. More details of the MMD
dataset can be found in [30].

4.2 Experimental Settings
4.2.1 Hyper parameters. Following the former studies [21, 30],

we utilized two-turn utterances prior to the target response as
the context and the vocabulary size was set as 26,422. In the
context encoder and response decoders, the RNN models are
both implemented by the Gate Recurrent Units with 512 cells. In
addition, the length of the knowledge vector k is 512 and the
margin in the max-margin loss of the recommender is 1. Besides,
the numbers of positive and negative products in recommendation
are 1 and 4, respectively. We used Adam [10] to optimize the whole
neural model and the learning rate was initialized as 0.0001.

4.2.2 Evaluation Metrics. To compare with the existing meth-
ods, we evaluated the performance of MAGIC over two basic
tasks separately. For the task of textual response generation, we
integrated the simple RNNdecoder and the knowledge-aware RNN
decoder to produce all textual responses. And we utilized Bleu-N
[28], and Nist [11] to measure the similarity between the predicted
and target responses. As the length of 20.07% target responses in
the MMD dataset is less than 4, such as “Yes!” and “That’s right!”,
we calculated Bleu-N by varying N from 1 to 4. In particular, higher
Bleu scores indicate that more n-gram overlaps exist between the
predicted and target responses. And based on Bleu, Nist considers
the weights of n-grams dynamically. The rarer a n-gram is, the
more weight it will be given. As to the best image selection, we
judged it by the Recall@-m metric similar to [30] and [21], where
m is varied from 1 to 3. And the selection is correct only if the
positive product is ranked in the top-m ones.

4.2.3 Baselines. To justify the performance ofMAGIC, we com-
pared MAGIC with several representative methods: Seq2seq [34],
HRED [31], MHRED [30], Attention-based MHRED (AMHRED)
[30], and KMD [21]. In particular, 1) Seq2seq is a classic
encoder-decoder framework and achieves superior performance
in many natural language processing tasks. 2) HRED is the most
representative method in text-based multi-turn dialog systems.
3) MHRED is the first work on multimodal task-oriented dialog
systems in the retail domain. 4) AMHRED is proposed along
with MHRED, which incorporates the attention mechanism into
MHRED at the sentence level. And 5) KMD is the state-of-the-art
method in multimodal task-oriented dialog systems.

4.3 Objective Evaluation
4.3.1 Evaluating the best image selection. Table 2 displays the

performance comparison with respect to Recall@m on the best
image selection. From Table 2, we have the following findings:
1) MAGIC outperforms all the baselines in this task. Specifically,
the recall scores of MAGIC approach 100%. According to our
analyses, it is probably because: a) MAGIC extracts visual features

Table 2: Performance comparison between our proposed
MAGIC model and baselines on the best image selection.

Methods Recall@1 Recall@2 Recall@3

Text-only Seq2seq 0.5926 0.7395 0.8401
HRED 0.4600 0.6400 0.7500

Multimodal

MHRED 0.7200 0.8600 0.9200
AMHRED 0.7980 0.8859 0.9345
KMD 0.9198 0.9552 0.9755
MAGIC 0.9813 0.9927 0.9965

Table 3: Performance comparison between the baselines and
MAGIC on textual response generation.

Methods Bleu-1 Bleu-2 Bleu-3 Bleu-4 Nist

Text-only Seq2seq 35.39 28.15 23.81 20.65 3.3261
HRED 35.44 26.09 20.81 17.27 3.1007

Multimodal
MHRED 32.60 25.14 23.21 20.52 3.0901
AMHRED 33.56 28.74 25.23 21.68 2.4600
MAGIC 50.71 39.57 33.15 28.57 4.2135

from the original product images by ResNet while the baselines
leverage the fixed visual features provided by [30]. And b)
the rich side information of products is incorporated into our
recommendation, which provides abundant product attributes for
MAGIC to distinguish the positive product from the negative ones.
And 2) the multimodal methods surpass the text-only methods.
Indeed, text-only methods totally ignore the visual features in the
multimodal context and only calculate the similarity between the
textual features of the context and the visual features of products.
Therefore, the poor performance of text-only methods verifies
that the similarity of visual features significantly matters in the
selection of products.

4.3.2 Evaluating the textual response generation. The perfor-
mance of the baselines and MAGIC on the textual response gener-
ation is summarized in Table 3. By contrast, we have the following
observations: 1) MAGIC surpasses the baselines regarding the Bleu
andNist scores, demonstrating that the adaptive decoders generate
more informative and meaningful responses by incorporating
multiform domain knowledge dynamically. 2) The Bleu-1 score of
MAGIC is relatively high. By analyzing the generated responses,
we found that MAGIC produces more accurate short responses
(e.g., “Yes” and “No” ) for the knowledge-aware queries (e.g.,
“Does Cel_28 (celebrity ID) like this T-shirt?” ). This verifies that
incorporating the abundant domain knowledge into the decoder
is crucial to the generation of knowledge-aware responses. And
3) the performance of Seq2seq and HRED is comparable with
MHRED, indicating that the generation of textual responses
depends more on the textual features in the multimodal context.
In addition, by comparing MHRED and AMHRED with MAGIC,
we can conclude that the incorporation of domain knowledge is
extremely crucial to the improvement of their performance.

4.4 Subjective Evaluation
Considering that some responses different from the target ones
may also make sense in some cases, we conducted subjective
comparison between the baselines and MAGIC. We first sampled
200 multimodal contexts randomly from the testing set, and
then compared their responses generated by MAGIC with each
baseline separately. In this way, we acquired 800 response pairs
in total, each containing a response from MAGIC and the other



Table 4: Human evaluation over the responses of MAGIC
and other baselines regarding four evaluation factors.

Fluency Relevance
Opponent Win Loss Tie Kappa Win Loss Tie Kappa
MAGIC vs.
Seq2seq 16.9% 13.8% 69.3% 0.46 37.8% 7.6% 54.7% 0.43

MAGIC vs.
HRED 9.3% 11.1% 79.6% 0.51 29.8% 8.9% 61.3% 0.37

MAGIC vs.
MHRED 39.6% 1.3% 59.1% 0.68 35.6% 5.3% 59.1% 0.58

MAGIC vs.
AMHRED 81.3% 2.7% 16.0% 0.60 74.7% 2.2% 23.1% 0.56

Logical Consistency Informativeness
Opponent Win Loss Tie Kappa Win Loss Tie Kappa
MAGIC vs.
Seq2seq 50.7% 8.4% 40.9% 0.65 20.0% 16.9% 63.1% 0.49

MAGIC vs.
HRED 40.9% 8.0% 51.1% 0.40 12.0% 25.3% 62.7% 0.55

MAGIC vs.
AMHRED 53.3% 5.3% 41.3% 0.61 48.0% 2.2% 49.8% 0.65

MAGIC vs.
AMHRED 78.2% 1.3% 20.4% 0.74 80.0% 2.7% 17.3% 0.67

from one of the four baselines. The responses in the pairs were
randomly shuffled and three annotators were invited to judge
which response is better in the context. If two responses are
both meaningful or inappropriate, the comparison of this pair is
treated as “tie”. The annotators judged the response pairs based
on the multimodal context from four aspects: fluency, relevance,
informativeness, and logical consistency. Ultimately, we averaged
the results of three annotators and reported them in Table 4.
The kappa scores indicate a moderate agreement among the
annotators. From Table 4, we found that: 1) MAGIC performs
well in most of the comparisons, demonstrating that MAGIC is
capable of producing more meaningful responses in the textual
response generation. 2) HRED generates more informative and
fluent responses than MAGIC does but its relevance and logical
consistency are poor. By analyzing the specific cases, we found
that although the responses of HRED are usually long and fluent,
many of them are nonsense. It is partly because that it only
considers the dependence among textual features and neglects
some key information for lacking of images and knowledge. And
3)MAGIC significantly outperformsMHRED andAMHRED due to
its advantage of leveraging knowledge-aware adaptive decoders.

4.5 Discussion
4.5.1 Case Study. Two representative samples are provided

in Figure 6. The part context is omitted due to the limited
space. From Figure 6, we can observe that the user asks about
product attributes in the first case and seeks for product popularity
in the second one. Moreover, MAGIC generates more accurate
answers than MHRED does due to the incorporation of product
attributes and popularity. Indeed, it is unlikely to generate accurate
knowledge-aware responses without related domain knowledge.
Only utilizing the similarity among the training samples is far
from enough. The samples in Figure 6 intuitively explain the
importance of incorporating multiform knowledge and the reason
why MAGIC produces higher Bleu and Nist scores.

4.5.2 Model Ablation. To examine the effectiveness of adaptive
decoders, we conducted the ablation test on MAGIC. We
eliminated the incorporation of multiform knowledge into the
decoder and leveraged a simple RNN decoder to produce the
general and knowledge-aware responses. Table 5 presents the

Table 5: The ablation test on knowledge-aware decoder.
Methods Bleu-1 Bleu-2 Bleu-3 Bleu-4 Nist
No Knowledge 35.90 23.79 17.34 13.33 2.5495
MAGIC 50.71 39.57 33.15 28.57 4.2135

What is the brand, material and type in the 5th result?

GT: T he footwear in the 5th image has M argaritaville brand ,  synthetic 
material, slip type.

MHRED: The footwear in the 5th image has Nike brand, synthetic material.

MAGIC: The footwear in the 5th image has Margaritaville brand, synthetic 
material, slip.

GT: celebrity cel_85 endorses this kind of clogs.

Which of the celebrities usually wear clogs similar looking to the one 
in the 3rd image?

MHRED: celebrity cel_734 endorses this kind of <unk>

MAGIC: celebrities cel_85 usually endorses this kind of clogs.

Figure 6: Case Study. “GT” denotes the ground truth
response.
comparison between MAGIC with and without knowledge-
aware RNN decoder. From Table 5, we can observe that the
performance drops significantly if the multiform knowledge
is removed from MAGIC, demonstrating the effectiveness of
incorporating multiform domain knowledge into the textual
response generation.

5 CONCLUSION AND FUTUREWORK
In this work, we present a multimodal task-oriented dialog system
with adaptive decoders to generate general responses, knowledge-
aware responses, and multimodal responses dynamically based
on various user intentions. In particular, the proposed model
first understands the users’ intentions based on the multimodal
context, and then leverages three parallel decoders, namely simple
RNN decoder, knowledge-aware RNN decoder, and recommender,
to generate responses in different medium forms. Extensive
experiments exhibit the superiority of our proposed model in
two basic tasks over the existing methods, demonstrating the
effectiveness of three adaptive decoders.

Since the proposed model has performed well in two basic tasks,
there is still a long way before applying it in practice. Firstly,
the number of products in the retail domain is huge while the
products for retrieval in theMMDdataset are limited. Secondly, the
dialogs in the training dataset are restricted in the retail domain,
thus extending the application domain of the proposedmultimodal
dialog system is a tough issue. In the future, wewill further explore
these issues and improve the practicability of the proposed model.
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