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ABSTRACT
Di�erent from traditional long videos, micro-videos are much
shorter and usually recorded at a speci�c place with mobile devices.
To be�er understand the semantics of a micro-video and facilitate
downstream applications, it is crucial to estimate the venue where
the micro-video is recorded, for example, in a concert or on a
beach. However, according to our statistics over two million micro-
videos, only 1.22% of them were labeled with location information.
For the remaining large number of micro-videos without location
information, we have to rely on their content to estimate their venue
categories. �is is a highly challenging task, as micro-videos are
naturally multi-modal (with textual, visual and, acoustic content),
and more importantly, the quality of each modality varies greatly
for di�erent micro-videos.

In this work, we focus on enhancing the acoustic modality for
the venue category estimation task. �is is motivated by our �nding
that although the acoustic signal can well complement the visual
and textual signal in re�ecting a micro-video’s venue, its quality
is usually relatively lower. As such, simply integrating acoustic
features with visual and textual features only leads to suboptimal
results, or even adversely degrades the overall performance (cf.
the barrel theory). To address this, we propose to compensate
the shortest board — the acoustic modality — via harnessing the
external sound knowledge. We develop a deep transfer model
which can jointly enhance the concept-level representation of
micro-videos and the venue category prediction. To alleviate the
sparsity problem of unpopular categories, we further regularize
the representation learning of micro-videos of the same venue
category. �rough extensive experiments on a real-world dataset,
we show that our model signi�cantly outperforms the state-of-the-
art method [47] in terms of both Micro-F1 and Macro-F1 scores by
leveraging the external acoustic knowledge.
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(a) Distribution of User Ratings (b) Disbtribution of Venue Categories

Figure 1: (a) User study of importance of acoustic signal. (b)
Distribution of top 100 venue categories of the micro-video
benchmark data [47].
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1 INTRODUCTION
�e emerging micro-video sharing platforms, such as Vine1,
Snapchat2, and Instagram3, enable users to shoot, capture, and
share micro-videos of their daily life at any time and any place.
Di�erent from traditional long videos, micro-videos, lasting for 6-
15 seconds, greatly cater to users’ narrow a�ention spans, and they
are usually recorded at a speci�c place with smart mobile devices.
�e success of these platforms is taking the media world by storm
and bene�ts many potential applications, such as marketing and
advertising [7]. However, as a new media form, research studies
on micro-video understanding, such as venue estimation, event
detection, and object tracking, are relatively sparse.

Recently, Zhang et al. [47] conducted a preliminary study on
micro-video understanding by estimating their venue categories. It
utilizes the consensus information on visual, acoustic, and textual
1h�ps://vine.co.
2h�ps://www.snapchat.com.
3h�ps://www.instagram.com.
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Figure 2: Schematic illustration of our proposed deep transfer model. It transfers knowledge from external sound clips to
strengthen the description of the internal acoustic modality in micro-videos. Meanwhile, it conducts a deep multi-modal
fusion towards venue category estimation.

modalities of micro-videos to recognize the venue information. �e
multi-modal method, unfortunately, overlooks the fact that the
quality of each modality varies dramatically. According to their
experiments [47], the acoustic modality demonstrates the weakest
capability in indicating the venue information. Ignoring the varying
quality of di�erent modalities may cause the negative cask e�ect,
resulting in suboptimal prediction performance.

To gain deep insights into micro-videos, we performed a user
study to explore the in�uence of acoustic signal on estimating the
venue category. Given 100 micro-videos randomly sampled from
Vine, �ve volunteers were invited to guess the venue category of
each micro-video by listening to its sound only, without knowing
its textual and visual content. Subsequently, they were asked to
rate the importance of sound of each micro-video with a score 1 to
5, where a higher score indicates that the acoustic signal is more
informative to re�ect the venue category. As shown in Figure 1(a),
we have two key observations: 1) for 59% micro-videos, the acoustic
modality can bene�t the venue category estimation to a certain
extent. �is points to the positive e�ect of acoustic concepts; for
example, recognizing bird chirps or crowds cheering from sound is
helpful for estimating a park or concert. However, 2) the acoustic
signal of 84% micro-videos are insu�cient to re�ect the venue
category accurately (scores below 4), pertaining to the inherent
noise and low quality. �is study lends support to the usefulness
of acoustic information of micro-videos, however, they need to be
further re�ned for enhancing performance.

Leveraging the rich, external sound knowledge to compensate
the internal acoustic signal is an intuitive thought. Nevertheless, it
is non-trivial to implement due to the following challenges:

• Since most micro-videos record events of users’ daily life, we
need to learn high-level acoustic concepts to be�er distinguish
events [35]. However, to our knowledge, there is no suitable
sound data for micro-videos, as existing labelled data are either
too small to cover the common acoustic concepts [30] or
constructed from videos of limited event categories [3, 33].

• External sounds are unimodal data; whereas micro-videos unify
textual, visual, and acoustic modalities to describe a real-life
event. It is technically challenging to fuse the unimodal sound
data to improve the learning of multi-modal video data.

• According to our statistics, we observe a severe sparsity problem
of unpopular categories (cf. Figure 1(b)). �e insu�cient training
samples easily result in a poor classi�er, which tends to classify
an unseen micro-video into the dominated categories.

To address these challenges, we �rst construct 313 high-level
acoustic concepts that cover most common real-life sounds; we
then collect 43, 868 sound clips from Freesound4 based on the
acoustic concepts. We design a Deep trAnsfeR modEl (DARE),
which jointly leverages external sounds to strengthen the acoustic
concept learning and the category similarity to alleviate the sparsity
problem. Figure 2 illustrates the work�ow of our DARE approach.
Speci�cally, we �rst extract features for each modality, and then
project the features of each modality with a dedicated mapping
matrix to obtain the high-level representations. To transfer the
external sound knowledge, we apply the same acoustic feature
extractor on the labelled audio clips and use the same mapping
matrix as the acoustic modality. Following that, we concatenate
the representations of three modalities and feed it into a deep
neural network with multiple hidden layers, which can capture the
non-linear correlations among concepts. To alleviate the sparsity
problem of unpopular categories, we preserve the similarity of
micro-videos according to their venue categories. Formally, we
encourage the micro-videos within the same category to have
similar representations in the latent space; meanwhile, the ones
from di�erent categories are enforced to be dissimilar with each
other. As such, the representation learning of unpopular categories
can considerably bene�t from that of popular categories and thus
boost the representation learning. We ultimately feed the fused
representations into a prediction function to estimate the venue
categories. We validate our DARE model over a publicly accessible
benchmark dataset. Extensive experiments demonstrate that our
model can yield promising performance.

�e main contributions of this work are threefold:
• We construct a set of acoustic concepts with corresponding sound

clips, covering most of the frequent real-life sounds. We have
released this dataset and the source codes of this work to facilitate
the research community5.

• We build a deep transfer model to estimate the venue categories
of micro-videos. It is capable of seamlessly transferring the
external sound knowledge to enhance the acoustic modality
description.

• We alleviate the sparsity problem of unpopular categories by
regularizing the similarity among categories, and then obtain the
discriminative and conceptual representation of micro-videos by
modality-aware mapping functions.

4h�ps://freesound.org/.
5h�ps://goo.gl/DCtVE6.
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�e rest of this paper is structured as follows. In Section 2, we
review the related work. Section 3 and 4 respectively detail our data
collection and our proposed DARE model. We conduct experiments
and analyze the results in Section 5, followed by conclusion and
future work in Section 6.

2 RELATEDWORK
Our work is closely related to multimedia location estimation,
dictionary learning, and acoustic concept detection.

2.1 Multimedia Location Estimation
Roughly speaking, pioneer e�orts on multimedia location
estimation can be grouped into two categories: unimodal venue
estimation [4, 8, 15] and multi-modal venue estimation [9, 13, 47].
Approaches in the former category extract a rich set of visual
features from images and leverage the visual features to train either
shallow or deep models to estimate the venues of the given images.
Beyond the unimodal venue estimation which only takes the visual
information into account, multi-modal venue estimation works
infer the geo-coordinates of the video recording places by fusing
the textual and visual/acoustic cues. �e principle is that integration
of multiple modalities can lead to be�er results, and it is consistent
with the old saying two heads are be�er than one cues [20, 21, 37, 38].
However, multi-modal venue estimation is still at its infant stage,
and few of them pay a�ention to the cask e�ect phenomenon, let
alone borrowing knowledge from external sources.

2.2 Dictionary Learning
We claim that our DARE model is related to dictionary learning,
since they both learn conceptual representations. Dictionary
learning aims to �nd a dictionary of atoms (concepts), in which
each sample admits a sparse representation in the form of a linear
combination of atoms. Existing e�orts are in either unsupervised or
supervised se�ings. �e unsupervised one aims to reconstruct
the original signals as precise as possible via minimizing the
reconstruction error. �ey achieved promising performance in
the reconstruction tasks, such as denoising [11], restoring [27],
and coding [25]. Despite their value in the reconstruction tasks,
they are unfavorable in classi�cation tasks [42]. �is motivates
the development of supervised dictionary learning [28, 48], which
leverages the class labels in the training set to build a more
discriminative dictionary for the particular classi�cation task at
hand. �ey have been well adapted to many applications with
be�er performance, such as painting style inferring [22] and image
classi�cation [24]. Di�erent from prior e�orts that have sparse
constraints and have to learn dictionaries, our method uses mapping
functions to project the low-level features to high-level conceptual
representations.

2.3 Acoustic Concept Detection
Acoustic concept detection on the user-generated videos is a
relatively new �eld in multimedia community [34], composing
of the data-driven [5, 6] and task-driven [1, 33] approaches from
the perspective of modeling acoustic concepts. �e main motivation
of acoustic concept detection is that audio analysis provides a
complementary information to detect the speci�c events that are

hardly identi�ed with visual cues. Recent studies [41] have shown
that detecting sound events to bridge the gap between the low-level
features and the high-level semantics outperforms the pure feature-
based approaches. Di�erent from acoustic concept detection, we
target at constructing a knowledge base of acoustic concepts and
leveraging such base to strengthen the representation learning of
micro-videos.

3 DATA COLLECTION
In this section, we describe the details of the datasets of the micro-
videos and our constructed external sounds.

3.1 Micro-video Dataset
To validate our work, we leveraged a public benchmark micro-video
dataset6. Micro-videos in this dataset were collected from Vine and
exclusively distributed in 442 venue categories. We �ltered out
those categories with less than 50 micro-videos following [47]. We
ultimately le� 270, 145 micro-videos over 188 venue categories.
Each micro-video is described by a rich set of features, namely,
4, 096-D convolutional neural networks (CNN) visual features
by AlexNet [19], 200-D Stacked Denoising Auto-encoder (SDA)
acoustic features, and 100-D paragraph to vector textual features.
Noticeably, in our selected dataset, 169 and 24, 707 micro-videos do
not have acoustic and textual modalities, respectively. We inferred
their missing data via matrix factorization, which have been proven
to be e�ective in the multi-modal data completion task [36].

3.2 External Sound Dataset
As analyzed before, the acoustic modality is the least descriptive
one and we expect to borrow the external sounds to enhance its
discrimination. �e scope of external sound dataset has direct e�ect
on the performance of representation learning over micro-videos.
�erefore, external sound construction is of importance. Indeed,
there are several prior e�orts on the sound clip collection. For
example, Mesaros et al. [30] manually collected audio recordings
from 10 acoustic environments and recognized them into 60 event-
oriented concepts; Pancoast et al. [33] established 20 acoustic
concepts relying on a small subset of TRECVID 2011; Burger et
al. [3] extracted 42 concepts to describe distinct noise units from
the soundtracks of 400 videos. We noticed that the existing external
sound bases are either too small to cover the common acoustic
concepts, or acquired from a narrow range of event-oriented videos.
�ey are thus infeasible for our task.

To address this problem, we chose to collect sound clips from
Freesound. Freesound is a collaborative repository of Creative
Commons licensed audio samples with more than 230,000 sounds
and 4 million registered users as of February 2015. Short audio clips
are uploaded to the website by its users, and cover a wide range
of real-life subjects, like applause and breathing. Audio content in
the repository can be tagged with acoustic concepts and browsed
by standard text-based search. We �rst went through a rich set of
micro-videos and manually de�ned 131 acoustic concepts, including
the 60 acoustic concepts from the real-life recordings in [29].

Our pre-de�ned acoustic concepts are diverse and treated as
the initial seeds. We then fed these concepts into Freesound as
6h�p://acmmm16.wixsite.com/mm16.
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Table 1: Statistics of our collected external sound data.
Concepts # Total Sound Clip # Sound Clips # Per Concept Average Duration Average Concepts # Per Sound Clip

313 43,868 140.15 14.99 seconds 2.99 (a�er data laundry)

Figure 3: Exemplar demonstration of some acoustic concepts and their average sound clip durations.

queries to search the relevant sound clips. In this way, we gathered
16, 363 clips. Each clip was manually labeled with several tags
(i.e., acoustic concepts) by their owners and we in total obtained
146, 580 acoustic concepts. To select the commonly heard acoustic
concepts, we �ltered out those concepts with less than 50 sound
clips. Meanwhile, we adopted WordNet [18] to merge the acoustic
concepts with similar semantic meanings, such as kids and child.
�erea�er, we were le� a set of 465 distinct acoustic concepts.
Following that, we again fed each acoustic concept into Freesound
as a query to acquire its sound clips with a number limit of 500. As
a result, we gathered 45, 948 sound clips. To ensure the quality of
the sound data, we retrained acoustic concepts with at least 100
sound clips. We ultimately have 313 acoustic concepts and 43, 868
sound clips. �e statistics of the acoustic dataset are summarized
in Table 1. Some acoustic concept examples and their average
sound durations are demonstrated in Figure 3. We can see that the
external sound clips are very short. Similar to the micro-videos, the
collected sound clips can be characterized by high-level concepts.
Regarding each audio clip, we explored and extracted the same
SDA acoustic features with those of the acoustic modality in micro-
videos. We will clarify why we extracted this type of features in
the experiments.

4 DEEP TRANSFER MODEL
In this section, we formally introduce the problem de�nition.
Suppose there are N micro-videos X = {xi }Ni=1. For each micro-
video x ∈ X, we pre-segment it into three modalities x =
{xv , xa , xt }, whereinto the superscripts v , a, and t respectively
represents the visual, acoustic, and textual modality. To make more
clear presentation, we denote m ∈ M = {v,a, t} as a modality
indicator, and xm ∈ RDm as the Dm-dimensional feature vector
over the m-th modality. And we associate x with one of the K
pre-de�ned venue categories, namely an one-hot label vector y.
Our research objective is to generalize a venue estimation model
over the training set to the new coming micro-videos.

4.1 Sound Knowledge Transfer
In order to leverage external sound knowledge to enhance the
acoustic modality in micro-videos, we have two assumptions:
1) Concept-level representations are more discriminative to
characterize each modality in micro-videos and the external sounds.
And 2) the natural correlation between the acoustic modality in

micro-videos and the real-life sounds motivates us to assume that
they share the same acoustic concept space.

As to the concept-level representation, one intuitive thought
is multi-modal dictionary learning, whereby the atoms in the
dictionaries are treated as concepts. We, however, argue that
the implicit assumption of multi-modal dictionary learning does
not always hold in some real-world scenarios: the dictionaries of
distinct modalities share the same concept space. Considering the
micro-video as an example, the acoustic modality may contain
the concept of chirp of birds that is hardly expressed by the visual
modality. In the textual one, it may signal some atoms related to
sense of smell, which also impossibly appear in the visual modality.
�erefore, it is not necessary to enforce the dictionaries of di�erent
modalities to contain the same set of concepts. To avoid such
problem, we propose to learn a separate mapping function for each
modality that is able to project the low-level features to concept-
level representations. Analogous to the dictionaries in dictionary
learning paradigms, the mapping functions are the concept-feature
distributions.

Let X̃a = {x̃ai }
N ′
i=1 be the dataset of external sounds. �ese

sounds share the same low-level feature space with the acoustic
modality in micro-videos (i.e., x̃a ∈ RDa ). For each sound clip
x̃a , we denote its corresponding concept-wise representation as
ãa ∈ RK ′ over K ′ acoustic concepts, whereby K ′ equals to the
number of acoustic concepts in this work, i.e., 313. It is worth
noting that ãa is observable, since we know the associated tags (i.e.,
acoustic concepts of each collected sound clip). During learning,
we aim to use the concept space of the external real-life sounds
to represent the acoustic modality in each micro-video. �is is
accomplished by ensuring that xa and x̃a share the same mapping
function. Based upon this, our objective function J1 of sound
knowledge transfer can be stated as:

J1 = 1
N

∑
x∈X

∑
m∈M

Dmxm − am
2 + 1

N ′
∑̃
x∈X̃

Da x̃a − ãa
2
, (1)

where Da ∈ RDa×K ′ is the shared mapping function, bridging
the gap between the external sounds and the internal acoustic
modality, whereinto its i-th column dai represents the low-level
feature for the i-th concept, such as footsteps or clearing throat;
and aa ∈ RK ′ is the desired concept-level representation of x over
the K ′ acoustic concepts; Dv and av (Dt and at ) are analogous to
Da and aa . Noticeably, Dv is an identity matrix, slightly di�erent
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from other two mapping functions, since the visual features are
su�ciently abstractive extracted by AlexNet.

4.2 Multi-modal Fusion
As aforementioned, multi-modalities provide complementary.
We thus argue that multi-modal fusion [12, 40] can provide
comprehensive and informative description for micro-videos. In
our case, we adopt early fusion strategy for simplicity. Formally, for
each micro-video x, we concatenate av , aa , and at into one vector
as,

a = [av , aa , at ], (2)

where a ∈ RKv+K ′+Kt is the desired multi-modal representation for
x, whereinto av , aa , and at respectively denotes the concept-level
representation over the visual, acoustic, and textual modalities.

To alleviate the sparsity problem of unpopular categories, we
further boost the representation learning of each category by
preserving and regularizing the venue similarity. In particular,
if two micro-videos are captured in the same venue, they should
have similar representations in the latent space; otherwise, their
representations should be dissimilar. As such, the representation
learning process of unpopular categories can bene�t from the
processes of other categories since the representation pertains to
the discriminative and semantical category information. �is suits
well the paradigm of graph embedding [40, 43, 45, 46], which injects
the label information into the embeddings.

Formally, we denote (xi , xj ) as the pair of the i-th and j-th
samples, and de�ne a pairwise class indicator as,

γi j =
{

+1, if xi and xj have the same label;
−1, otherwise.

(3)

To encode the similarity preservation [17, 39], we minimize the
cross entropy loss of classifying all the pairs into a label γ ,

N∑
i, j=1
−I(γi j = 1) logσ (a>i aj ) − I(γi j = −1) logσ (−a>i aj ), (4)

where I(·) is a binary indicator function that outputs 1 when the
argument is true, otherwise 0; and σ (·) is the sigmoid function. We
can equivalently rewrite the above equation as,

J2 = −
N∑
i=1

N∑
j=1

logσ (γi ja>i aj ). (5)

It is very time-consuming to directly optimize Eqn.(5) due to the
huge amount of the instance pairs, i.e., O(N 2) w.r.t. N samples.

To reduce the computing load, we turn to the strategy of
negative sampling [31]. In particular, for a given micro-video
sample x, we respectively sampled S positive from x’s own category
and S negative micro-videos from its non-categories following a
distribution (xi , xj ,γi j ).

4.3 Deep Network for Venue Estimation
A�er obtaining the multi-modal representations, we add a stack
of fully connected layers following [16, 39], which enables us to
capture the nonlinear and complex interactions between the visual,

acoustic, and textual concepts. More formally, we de�ne these fully
connected layers as,

e1 = σ1(W1a + b1)
e2 = σ2(W2e1 + b2)
· · · · · ·
eL = σL(WLeL−1 + bL)

, (6)

where Wl , bl , σl , and el denote the weight matrix, bias vector,
activation function, and output vector in the l-th hidden layers,
respectively. As for activation function in each hidden layer, we
choose Recti�er (ReLU) to learn higher-order concept interactions
in a non-linear way. Regarding the size of hidden layers, common
solutions follow the tower, constant, and diamond pa�erns.

�e output of the penultimate hidden layer is �a�ened to a dense
vector eL , which is passed to a fully connected so�max layer. It
computes the probability distributions over the venue category
labels, as,

p(ŷk |eL) =
exp(e>Lwk )∑K

k ′=1 exp(e>Lwk ′ )
, (7)

where wk is a weight vector of the k-th venue category; eL can be
viewed as the �nal abstract representation of the input x. �erea�er,
we obtain the probabilistic label vector ŷ = [ŷ1, · · · , ŷK ] over the K
venue categories.

�erea�er, we adopt the regression-based function to minimize
the loss between the estimated label vector and its target values, as,

J3 = 1
2

∑
x∈X
‖y − ŷ‖2 , (8)

where an ideal model should predict the venue category correctly
for each micro-video.

We ultimately obtain our objective function of the proposed
deep transfer model by jointly regularizing the sound knowledge
transfer, multi-modal fusion, and deep neural network for venue
estimation as,

J = J1 + J2 + J3. (9)

4.4 Training
We adopted the stochastic gradient descent (SGD) to train our
model in a mini-batch mode and updated the corresponding model
parameters using back propagation. In particular, we �rst sampled
a batch of instances and took a gradient step to optimize the loss
function of external sound transfer. We then sampled a batch of
(xi , xj ,γi j ) and took another gradient step to optimize the loss of
multi-modal embedding learning. �erea�er, we optimized the loss
function of venue category estimation. To speed up the convergence
rate of SGD, various modi�cations to the update rule have been
explored, namely, momentum, adagrad, and adadelta.

While deep neural networks are powerful in representation
learning, a deep architecture easily leads to the over��ing on the
limited training data. To remedy the over��ing issue, we conducted
dropout to improve the regularization of our deep model. �e idea is
to randomly drop part of neurons during training. As such, dropout
acts as an approximate model averaging. In particular, we randomly
dropped ρ of a, whereinto ρ is the dropout ratio. Analogously, we
also conducted dropout on each hidden layer.
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5 EXPERIMENTS
To thoroughly justify the e�ectiveness of our proposed deep
transfer model, we carried out extensive experiments to answer the
following research questions:

• RQ1: Are the extracted 200-D SDA features discriminative to
represent the external sounds?

• RQ2: Can our DARE approach outperform the state-of-the-art
baselines for micro-video categorization?

• RQ3: Is the external sound knowledge helpful for boosting the
categorization accuracy and does the external data size a�ect the
�nal results?

• RQ4: Does the proposed DARE model converge and do di�erent
parameter se�ings a�ect the �nal results?

5.1 Experimental Settings
5.1.1 Metrics. In this work, we adopted Macro-F1 and Micro-

F1 [14] to measure the micro-video classi�cation performance of
our approach and the baselines. �ey both reach the best value at
1 and worst one at 0. �e macro-average weights all the classes
equally, regardless of how many instances belong to each class. By
contrast, the micro-average weights all the instances equally.

We divided our dataset into three parts: 132, 370 for training,
56, 731 for validation, and 81, 044 for testing. �e training set was
used to adjust the parameters, while the validation one was used
to verify that any performance increase over the training dataset
actually yields an accuracy increase over a dataset that has not
been shown to the model before. �e testing set was used only for
testing the �nal solution to con�rm the actual predictive power of
our model with optimal parameters.

5.1.2 Baselines. We chose the following methods as baselines:

• Default: For any given micro-video, we dropped it into the
category with the most micro-videos by default.

• D3L: Data-driven dictionary learning is a classic unimodal
supervised dictionary learning framework [26].

• MDL: �is baseline is the traditional unsupervised multi-modal
dictionary learning [32]. It is followed with a so�max classi�er.

• MTDL: �is is a multi-modal task-driven dictionary learning
approach [2] learning the discriminative multi-modal dictionaries
simultaneously with the corresponding venue category classi�ers.

• TRUMANN: �is is a tree-guided multi-task multi-modal
learning method, which considers the hierarchical relatedness
among the venue categories.

• AlexNet: In addition to the shallow learning methods, we added
four deep models into our baseline pool, i.e., the AlexNet model
with zero, one, two, and three hidden layers, whereby their inputs
are the original feature concatenation of three modalities and
they predict the �nal results with a so�max function.

Indeed, our model is also related to transfer learning methods.
However, existing transfer models [10, 23, 44] are not suitable to our
task, since they work by leveraging one source domain to support
one target domain. Yet, our task has one source domain (external
sounds) and three target domains (three modalities). �erefore, we
did not compare our method with transfer learning methods.

Table 2: Discrimination comparison among di�erent
acoustic features.

Feature sets Macro-F 1 Micro-F 1 p-value
spectrum(mean) 6.23±0.30% 8.87±0.17% 7.4e -6
spectrum(max) 5.88±0.49% 8.25±0.53% 4.8e -6
MFCC(mean) 4.92±0.63% 11.36±0.96% 3.6e -4
MFCC(max) 9.21±0.46% 15.72±0.77% 4.2e -3

SDA 12.74 ± 0.62% 17.09 ± 0.69% -

5.1.3 Parameter Se�ings. We implemented our DARE model
with the help of Tensor�ow7. To be more speci�c, we randomly
initialized the model parameters with a Gaussian distribution for
all the deep models in this paper, whereby we set the mean and
standard derivation as 0 and 1, respectively. �e mini-batch size and
learning rate for all models was searched in [256, 512, 1,024] and
[0.0001, 0.0005, 0.001, 0.005, 0.1], respectively. We selected Adagrad
as the optimizer. Moreover, we selected the constant structure of
hidden layers, empirically set the size of each hidden layer as 1,024
and the activation function as ReLU. For our DARE, we set the
embedding sizes of visual, acoustic, and textual mapping matrices
as 4,096, 313, and 200, respectively, which can be treated as the
extra hidden layer for each modality. Without special mention, we
employed one hidden layer and one prediction layer for all the deep
methods. We randomly generated �ve di�erent initializations and
fed them into our DARE. For other competitors, the initialization
procedure is analogous to ensure the fair comparison. We reported
the average testing results over �ve round results and performed
paired t-test between our model and each of baselines over �ve-
round results.

5.2 Acoustic Representation (RQ1)
To represent each external sound clip, we �st extracted two kinds
of commonly used features, i.e., 513-D spectrum and 39-D mel
frequency cepstral coe�cients (MFCCs), with a 46-ms window
size and 50% overlap via librosa8. We then employed the mean-
and max-pooling strategy to represent each clip. Besides, we also
adopted theano9 to learn a 200-D SDA feature vector of each clip,
whose input is the concatenated feature vector of 513-D spectrum
(mean), 513-D spectrum (max), 39-D MFCCs (mean), and 39-D
MFCCs (max).

In order to justify the discrimination of the extracted features on
the external sounds, we respectively fed the features into a so�max
model to learn a sound clip classi�er. In particular, we treated each
acoustic concept as a label. We performed a 10-fold cross-validation.
�e results are summarized in Table 2. We can see that the SDA
features are the most discriminant one. We conducted signi�cance
test between SDA and each of the others regarding Macro-F1 based
on the 10-round results. All the p-values are greatly smaller than
0.05, which indicates that SDA is statistically signi�cant be�er. �at
is why we used the SDA feature in the herea�er experiments.

5.3 Performance Comparison (RQ2)
We summarized the performance comparison among all the
methods in Table 3. We have the following observations:
7h�ps://www.tensor�ow.org
8h�p://librosa.github.io/librosa.
9h�p://deeplearning.net/so�ware/theano.
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Table 3: Performance comparison between our model and
the baselines. �ereinto, AlexNet˙L denotes an AlexNet
model with L layers.

Micro-F1 Macro-F1 p-value1∗ p-value2∗

Default 11.40% 0.53% 1.93e-9 1.41e-8
MDL 20.46±0.49% 7.06±0.27% 3.39e-8 2.01e-7
D3L 19.03±0.29% 3.87±0.24% 1.29e-8 2.29e-8

MTDL 20.67±0.29% 6.16±0.24% 4.29e-8 1.94e-8
AlexNet0 25.95±0.08% 6.04±0.07% 9.81e-7 1.36e-8
AlexNet1 28.95±0.17% 9.45±0.13% 2.15e-5 1.38e-7
AlexNet2 29.04±0.17% 10.86±0.18% 4.02e-5 1.24e-6
AlexNet3 28.55±0.49% 10.65±0.34% 1.91e-4 4.87e-6

TRUMANN 25.27±0.17% 5.21±0.29% 2.46e-7 9.23e-8
DARE 31.21 ± 0.22% 16.66 ± 0.30% - -

Table 4: Performance of DARE with di�erent hidden layers.
Hidden Layers Micro-F1 Macro-F1 p-value1 p-value2

[1024] 31.21±0.22% 16.66±0.30% - -
[1024, 1024] 30.67±0.06% 15.57±0.03% 1.32e − 2 3.50e − 3

[1024, 1024, 1024] 29.43±0.02% 13.37±0.04% 1.17e − 4 1.57e − 6

Table 5: Micro-F1 Performance of DARE and DARE-sparsity
over the uniformly split venue category groups.

Category IDs [0-46] [47-93] [94-140] [141-187]
DARE 34.84 ± 0.32% 20.64 ± 0.40% 10.34 ± 0.42% 7.21 ± 0.34%

DARE-sparsity 31.75 ± 0.02% 9.63 ± 0.03% 1.53 ± 0.08% 1.67 ± 0.04%

• As expect, Default achieves the worst performance, especially
w.r.t. Macro-F1.

• In terms of Micro-F1, performance of three dictionary learning
baselines is comparative; whereas D3L achieves the worst Macro-
F1. �is may be due to that D3L does not di�er the three
modalities.

• �e TRUMANN model is be�er than dictionary learning methods,
since it considers the hierarchical structure of venue categories.

• AlexNet with at least one hidden layer remarkably outperforms
AlexNet0 and dictionary learning ones across metrics. �is
demonstrates the advantage of deep models.

• Among the AlexNet series, it is not the deeper the be�er. �is is
caused by the intrinsic limitation of AlexNet (We will detail it in
RQ4.).

• Without a doubt, our proposed model achieves the best regardless
of the metrics. �is justi�es the e�ectiveness of our model.
From the perspective of Macro-F1, our model makes noteworthy
progress. �is further shows the rationality of similarity
preservation by encoding the structural category information.
In addition, we also conducted pair-wise signi�cant test between
our model and each baseline. All the p-values are greatly smaller
than 0.05, which indicates the performance improvement is
statistically signi�cant.

5.4 External Knowledge E�ect (RQ3)
We carried out experiments to study the e�ect of external sound
knowledge on our model. In particular, we varied the number
of external acoustic concepts from 0 to 313. Figure 4(a) and 4(b)
illustrates the performance of our model according to the external
data size w.r.t. Macro-F1 and Micro-F1, respectively. It is clear
that these two curves goes up very fast. Such phenomenons tell

(a) Macro-F1 vs. Acoustic Concept (b) Micro-F1 vs. Acoustic Concept

Figure 4: Performance ofDAREw.r.t. the number of external
acoustic concepts in terms of F1 measurements.

(a) Training Loss vs. Iteration (b) Macro-F1 vs. Iteration

(c) Micro-F1 vs. Iteration (d) Micro-F1/Macro-F1 vs. dropout ratio

Figure 5: Convergence and dropout ratio study of the
proposed DARE model.

us that transferring external sound knowledge is useful to boost
the categorization accuracy. Also, it signals that the more external
sounds are involved, the be�er performance we will achieve. �is
is because it can cover a much wider range of acoustic concepts
appeared in micro-videos, and hence be�er strengthen the acoustic
modality comprehensively.

5.5 Study of DARE Model (RQ4)
We wonder whether our model converges and how fast it is. To
answer this question, we plot the training loss, Macro-F1, and
Micro-F1 w.r.t. the number of iterations in Figure 5(a), 5(b), and 5(c),
respectively. From these three sub-�gures, it can be seen that the
training loss of our proposed DARE model decreases quickly within
the �rst 10 iterations, and accordingly the performance is also
boosted very fast. �is demonstrates the rationality of a learning
model. In addition, the loss and performance tend to be stable at
around 30 iterations. �is signals the convergence property of our
model and also indicates its e�ciency.

�e key idea of dropout technique is to randomly drop units
(along with their connections) from the neural network during
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training. �is prevents units from co-adapting too much. Figure 5(d)
displays the Macro-F1 and Micro-F1 by varying the dropout ratio
ρ. From this �gure, it can be seen that the two measurements
consistently reach their best value when using a dropout ratio of 0.1.
A�er 0.1, the performance decreases gradually as the dropout ratio
increases. �is may be caused by insu�cient information. Also,
we can see that our model su�ers from over��ing with relatively
lower performance when dropout ratio is set as 0.

We also studied the impact of hidden layers on our DARE
model. To save the computational tuning costs, we applied the
same dropout ratio 0.1 for each hidden layer. �e results of our
model with di�erent hidden layers are summarized in Table 4.
Usually, stacking more hidden layers is bene�cial to boost the
desired performance. However, we notice that our model achieves
the best across metrics when having only one hidden layer. �is is
due to that, as the authors of AlexNet clari�ed, the current 7-layer
AlexNet structure is optimal and more layers would lead to worse
results. �erefore, stacking more hidden layers in our DARE model
seems to add more hidden layers to AlexNet.

To analyze the e�ect of the proposed similarity regularizer, we
remove the Eqn.(5) from our DARE model, denoted as DARE-
sparsity. �erea�er, we conduct DARE and DARE-sparsity over
the same venue category groups, where the smaller category IDs
represent the more popular venues with more su�cient training
data. Table 5 presents the performance w.r.t. Micro-F1 over di�erent
category groups. As we can see, when category groups tend to
be unpopular, DARE-sparsity su�ers severely from the insu�cient
training data and the poor classi�er; meanwhile, DARE is relatively
insensitive to the sparsity problem and can boost the classi�cation
performance considerably. �is highlights the signi�cance of
similarity regularization of categories.

5.6 Visualization
We conducted experiments to shed some light on the correlation
between venue categories and acoustic concepts. In particular,
we calculated the correlations between acoustic concepts and
venue categories via producing inner products on the conceptual
distributions and venue label vectors of samples.

• To save the space, we visualized part of correlation matrix
via a heat map, where lighter color indicates weak correlation
and vice versa, as shown in Figures 6(a) and 6(b). We can see
that almost every selected venue category are tightly related to
several acoustic concepts. Moreover, di�erent venues emphasize
a variety of acoustic concepts. For example, the micro-videos
with venue of Italian Restaurant and College (University) have
signi�cant correlations with the onomatopoeia concepts, such
as ra�le, jingle, and rumble; Meanwhile, several motion concepts,
such as screaming, running, and clapping provide clear cues to
infer the venue information of Housing Development, Gym, and
Playground, respectively. �ese observations agree with our
common sense and further demonstrates the potential in�uence
of acoustic information on the task of venue category estimation.

• We select exemplary demonstration of two micro-videos of
stadium and beach, as shown in Figures 6(c) and 6(d). �e
detected acoustic concepts include several concepts which are
consistent with the visual modality, such as girl and crowed, and

(a) Onomatopoeia Concepts (b) Motion Concepts

(c) Stadium Example (d) Beach Example

Figure 6: (a)-(b): Visualization of correlations between
venue category and two types of acoustic concepts; (c)-(d):
Exemplary demonstration of two micro-videos of stadium
and beach, where the red circles present the detected
acoustic concepts that are hardly detected from the visual
modality, and the green circles denote these concepts that
are consistent with the visual modality. (It is noted that the
positions of circle do not present the locations of concepts).

some exclusive ones which are hardly revealed from the other
modalities, such as laughter, whistle, and wave. It further veri�es
our assumption that the concepts from di�erent modalities are
complementary with each other.

6 CONCLUSION AND FUTUREWORK
In this paper, we study the task of micro-video category estimation.
We present a deep transfer model, which is able to transfer external
sound knowledge to strengthen the low-quality acoustic modality in
micro-videos, and also alleviate the sparsity problem via encoding
the category information into the representation learning. To
justify our model, we constructed the external sound sets with
diverse acoustic concepts, and released it to facilitate the community
research. Experimental results on a public benchmark micro-video
dataset well validated our model.

In the future, we plan to avoid the AlexNet limitation by
exploring ResNet framework. Furthermore, pointing out the shared
and exclusive concepts of various modalities is our next research
focus, rather than simply detecting the concepts. Moreover, we will
introduce the a�ention scheme into our work to explicitly estimate
the in�uence of each concept on di�erent venues.
Acknowledgement We would like to thank the anonymous
reviewers for their valuable comments. �e work is supported
by the One �ousand Talents Plan of China under Grant
No.:11150087963001.
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