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ABSTRACT

In the past few years, language-based video retrieval has attracted

a lot of attention. However, as a natural extension, localizing the

specific video moments within a video given a description query

is seldom explored. Although these two tasks look similar, the

latter is more challenging due to two main reasons: 1) The former

task only needs to judge whether the query occurs in a video and

returns an entire video, but the latter is expected to judge which

moment within a video matches the query and accurately returns

the start and end points of the moment. Due to the fact that different

moments in a video have varying durations and diverse spatial-

temporal characteristics, uncovering the underlying moments is

highly challenging. 2) As for the key component of relevance

estimation, the former usually embeds a video and the query into a

common space to compute the relevance score. However, the later

task concerns moment localization where not only the features of a

specific moment matter, but the context information of the moment

also contributes a lot. For example, the query may contain temporal

constraint words, such as “first”, therefore temporal context is

required to properly comprehend them.

To address these issues, we develop an Attentive Cross-Modal

Retrieval Network. In particular, we design a memory attention

mechanism to emphasize the visual features mentioned in the query

and simultaneously incorporate their context. In the light of this,

we obtain an augmented moment representation. Meanwhile, a

cross-modal fusion sub-network learns both the intra-modality

and inter-modality dynamics, which can enhance the learning of

moment-query representation. We evaluate our method on two

datasets: DiDeMo and TACoS. Extensive experiments show the

effectiveness of our model as compared to state-of-the-art methods.
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1 INTRODUCTION

Searching videos of interests from large collections has long been

an open problem in the field of multimedia information retrieval

[36]. Since this task needs to answer queries by relevant videos only,

most prior efforts cast it as a matching problem [33] by estimating

the relevance score between a video and the given query. Such

direct video-query matching works well for judging whether the

description query occurs in an entire video that depicts simple

scenes solely. However, in some real-world scenarios (e.g., robotic

navigation, autonomous driving, and surveillance), the untrimmed

videos usually contain complex scenes and involve a large number

of objects, attributes, actions, and interactions, whereby only some

parts of the complex scene convey the desired cues or match the

description. For a prepared surveillance video lasting for several

minutes, as Figure 1 shows, one may only have interest in the

moment, “a girl in orange first walks by the camera”, where the start

and end points are at the 24s and the 30s, respectively. Therefore,

localizing temporal moments of interest within a video is more

useful yet challenging, as compared to simply retrieving an entire

video.

In this paper, we focus on the task of moment retrieval, aiming

to identify the specific start and end points within a video to

precisely respond to the given query. In our work, a desired moment

refers to a query-aware temporal segment whose content is in

accordance with the given query1. In general, automatic moment

1Note that an entire video may contain multiple moments related to the given query.
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Figure 1: Temporal video moment localization is designed to localize a moment (the red bar) with a start point (24th s) and an

end point (30th s) in the video according to the given language query. Here the green bar denotes the ground truth, the orange

bar stands for the result of sliding window moment retrieval, and the red bar refers to the localizing result.

retrieval from a video requires two components, namely, fine-

grained moment candidates localization and relevance estimation.

The key challenges are, first, different moments in a video have

varying durations and diverse spatial-temporal characteristics;

thereby uncovering the underlying moments is already highly

challenging, not to mention the estimation of moment-query

relevance. To generate the moment candidates, a direct way is

to densely sample sliding windows at different scales. However,

such moment derivation methods are limited, not only for the

expensive computational costs, but also the exponential search

space. Second, the relevance estimation is a typical cross-modal

retrieval problem. A viable solution as employed in [2] is to first

project the visual features of the moment candidates and textual

features of the query into a common latent space and then calculate

the relevance based on their similarity. Nevertheless, such workflow

overlooks the spatial-temporal information inside the moment and

the query. Taking the query of “a girl in orange first walks by the

camera” as an example, the term “first” is relative and requires

temporal context for proper comprehension.

To address the aforementioned problems, we develop an

Attentive Cross-Modal Retrieval Network, dubbed as ACRN, for

the task of moment retrieval. For moment derivation, we propose

a temporal memory attention network to explore the attentive

contextual visual features of the moments. For each pre-segmented

moment, its surrounding context, consisting of pre- and post-

moments, encodes consistent signal to imply the continuous

scenes [10]. Inspired by this, we utilize a memory network to

memorize the contextual information for each moment, and treat

the natural language query as the input to an attention network

to adaptively assign weights to the memory representation. In the

light of this, we obtain the augmented moment representation.

Thereafter, we introduce a cross-modal fusion network to enhance

the moment-query representation. It is built on the inter- and

intra-modal embedding interactions. The former aims to explicitly

model the interactions between the visual and textual embeddings,

and the latter targets at exploring the embedding interactions

within each individual modality. Finally, we feed the moment-query

representation into a boundary regression model to predict the

relevance scores and moment offsets.

The key contributions of this work are three-fold:

• We present a novel Attentive Cross-Modal Retrieval Net-

work, which jointly characterizes the attentive contextual

visual feature and the cross-modal feature representation.

To the best of our knowledge, the existing studies either

consider only one of the above models or not integrate them

within a unified model.

• For the purpose of accurately localizing moments in a

video with natural language, we are the first to introduce

a temporal memory attention network to memorize the

contextual information for each moment, and treat the

natural language query as the input of an attention network

to adaptively assign weights to the memory representation.

• We perform extensive experiments on two benchmark

datasets to demonstrate the performance improvement. As

a side contribution, we released the data and codes2.

The rest of the paper is organized as follows. The related work

is briefly introduced in Section 2. Section 3 details the proposed

approach. We present experiment results in Section 4. Finally,

Section 5 concludes the work and points out the future directions.

2 RELATEDWORK

Localizing specific moments within a video responding to a textual

query is related to many vision tasks including video retrieval,

temporal action localization, as well as video description and

question answering.

2.1 Video Retrieval

Given a set of video candidates and a language query, video

retrieval algorithms aim to retrieve the videos that match the

query. Technically, the retrieval problem is usually tackled as a

ranking task [5–7], returning moments based on their matching

scores. Similar to image-language embeddingmodels [8, 31], current

methods [22, 44] are designed to incorporate deep video-language

embeddings. Lin et al. [18] proposed a retrieval model to match the

visual concepts in the videos with the semantic graphs generated by

parsing the sentence descriptions. Bojanowski et al. [1] introduced a

strategy to tackle the problem of video-text alignment by assigning

a temporal interval to each sentence given a video and a set of

2https://sigir2018.wixsite.com/acrn.
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sentences with the temporal ordering. Different from the discussed

algorithms, the input of our model is only one sentence query and

the temporal ordering is not used.

There are also some efforts dedicated to retrieving temporal

segments within a video in constrained settings. Tellex et al. [34]

considered retrieving video segments from a home surveillance

camera via text queries with a fixed set of spatial prepositions. Later,

Lin et al. [19] developed a model to retrieve temporal segments in 21

videos from a dashboard car camera. Recently, Hendricks et al.[2]

proposed a joint video-language model to retrieve moments within

a video based on texture queries. However, these models can only

verify the segments containing the corresponding moment. Namely,

there are many background noises in the returned results. Although

they could densely sample video moments at different scales and

utilize these models to retrieve the corresponding video moment, it

is not only computationally expensive but also makes the matching

taskmore challengingwith the search space increasing. As we know

that adjusting the temporal boundaries of proposals by learning

regression parameters has succeeded in the object localization, as

in [26]. In this paper, we adopted a similar strategy to predict the

start and end time points of the desired video moment.

2.2 Temporal Action Localization

Gaidon et al. [9] introduced the problem of temporally localizing

actions in the untrimmed videos, focusing on limited actions such

as “drinking and smoking” and “open the door and sit down”. Later,

researchers worked on building large-scale datasets consisting

of complex action categories, and proposed different models for

localizing activities in videos. Shou et al. [28] proposed an end-

to-end segment-based 3D Convolutional Neural Network (CNN)

framework, which outperforms other Recurrent Neural Network

(RNN)-based methods by capturing spatio-temporal information

simultaneously. And Singh et al. [30] presented a multi-stream bi-

directional RNN network for fine-grained action detection. Gao et

al. [11] proposed a novel temporal unit regression network model,

which can jointly predict action proposals and refine the temporal

boundaries by temporal coordinate regression. Due to the fact that

these methods are restricted to a pre-defined list of actions, Gao et al.

[10] proposed to use natural language queries to localize activities.

They leveraged all the context moments surrounding the current

input, without explicitly considering the semantic information of

the input query. It thus considers the video moments unrelated to

the input query, which is unnecessary or even misleading.

2.3 Video Description and Question Answering

More recently, attention mechanism [43] is a standard part of the

deep learning toolkit, contributing to the impressive results in

neural machine translation [21], video captioning [23, 41] and

video question answering [45]. Visual attention models for video

captioning leverage the video frames at every time step, without

explicitly considering the semantic attributes of the predictedwords.

It is unnecessary or even misleading. To tackle this issue, Song et

al. [32] proposed a hierarchical Long Short-term Memory (LSTM)

network [20] with an adjusted temporal attention model for video

captioning. Later, Hori et al.[14] expanded the attention model

to selectively attend not just to specific times or spatial regions,

Figure 2: An illustration of our proposed ACRN model.

but to specific modalities of the inputs such as image features,

motion features, and audio features. Their new modality-dependent

attention mechanism provides a natural way to fuse multimodal

information for video description. Recently, Xu et al. [42] proposed

a multimodal attention LSTM network, which fully exploits both

multimodal streams and temporal attention to selectively focus on

specific elements during the sentence generation.

Video question answering is a relatively new task, where a

video and a natural language question are provided and a model

is designed to reply the question. Zhao et al. [48] developed a

hierarchical dual-level attention networks to learn the question-

aware video representations with word-level and question-level

attentionmechanisms. And they also proposed a hierarchical spatio-

temporal attention network [49] to learn the joint representation of

the dynamic video contents according to the given question. Unlike

the aforementioned studies, Ye et al. [46] studied the problem of

video question answering by modeling its temporal dynamics with

frame-level attention mechanism. And Xu et al. [40] proposed to

refine the attention by gradually using both coarse-grained question

feature and fine-grained word feature. Motivated by these attention

mechanisms, we presented a temporal memory attention model to

dynamically select contextmoments consistentwith the input query

and simultaneously memorize the context moment information.

3 OUR PROPOSED ACRN MODEL

As Figure 2 illustrates, our proposed ACRN model comprises of the

following components: 1) the memory attention network leverages

the weighting contexts to enhance the visual embedding of each

moment; 2) the cross-modal fusion network explores the intra-

modal and the inter-modal feature interactions to generate the

moment-query representations; and 3) the regression network

estimates the relevance scores and predicts the location offsets

of the golden moments.

3.1 Problem Formulation

Let v and q denote a video and a query, respectively. We present a

video as a sequence of frames v = { ft }, where f represents a frame

and t ∈ {0, · · · ,τ } indexes the time point. The query is affiliated

with a temporal annotation (ts , te ), where ts and te is the start and
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end point3, respectively. Our task is to identify a golden moment

c = { ft }
τt
t=τs

corresponding to the description of the given query

q, whereby (τs ,τe ) = (ts , te ). Towards this end, we pre-segment the

video v into a set of moment candidates C = {ci }
M
i=1 via multi-scale

temporal sliding windows, where M is number of the moments4.

For the given query q and a moment candidate c overlapping with

the golden moment, we align the moment-query pair as a positive

training sample. Moreover, due to the segmentation strategy, the

positive candidates overlap with the golden moment on different

scales, we hence pair each positive moment-query pair (c,q) with a

time location offset (i.e., (ts −τs , te −τe )). We will detail the process

of data construction in Section 4.1. As such, the moment retrieval

problem can be formally defined as:

Input: A set of moment candidates C and the given query q.
Output: A ranking model mapping each moment-query pair

(c,q) to a relevance score and estimating their location offsets of

the golden moment.

3.2 Memory Attention Network

To estimate the matching score between each moment candidate

and the sophisticated query, a direct way is to project the visual

embeddings of the moment candidates and the textual embedding

of the query into a latent common space, and then feed them into

a well-designed similarity function to calculate their relevance.

Finally, it returns the moment with the highest score as the retrieval

result. Formally, we summarize the above process as follows,⎧⎪⎪⎪⎨⎪⎪⎪⎩
x̂c = fΘ(xc ),

q̂ = fΘ(q),

c∗ = argmaxc ∈C д(̂xc , q̂),

(1)

where xc ∈ RD1 and q ∈ RD2 denote the embeddings of the

moment c and the input query q, fΘ(·) is the mapping function

[47] to project xc and q to x̂c and q̂ in a common space, and д is

the similarity function.

Although feasible, solely considering the current moment

candidate overlooks the spatial-temporal information within its

surrounding context, leading to information loss and suboptimal

performance. For example, the term “first” in the query of “a girl in

orange first walked by the camera” is a temporal constraint word

and requires temporal context for a proper understanding. Recent

work [10] has observed that the pre-context and post-context

moments can be regarded as the context of the current moment

and provide its relative temporal position in a video. Inspired by

the observations, we consider to leverage the context information

to complement the current moment.

Suppose the context moments of each video moment c ∈ C are

Nc = {c j }, where j ∈ [−nc ,nc ] and nc denote the shift boundary
5.

We utilize j > 0, j = 0, and j < 0 to index the post-, current, and

pre-context moments, respectively. The embedding of the central

moment c is denoted as xc , and its context embeddings are denoted

3As mentioned before, a description query may correspond to multiple moments in a
given video. To simplify the notation, we only formulate one relevant moment.
4The generation of the moment candidates, the visual embedding of each moment,
and the textual embedding of the given query will be described in Section 4.1.
5For example, nc=1 denotes that the context moment number is 1. Namely, there is
one pre-context and one post-context moment. The generation of the context moments
is illustrated in Section 4.1.

Figure 3: An illustration of our proposed memory attention

model.

as xc j . Given these contextual embeddings, how to integrate

them is crucial to strengthen the representation discrimination

of the current moment. A simple strategy adopted in [11] is

to employ the average pooling on the context embeddings to

capture the interactions between the current and context moments.

And the output of the pooling operator is used as the enhanced

representation of the current moment, formulated as,

x̂c =
1

|Nc |

∑
c j ∈Nc

xc j . (2)

Although such average pooling is capable of fusing all contextual

embeddings into a single one, we argue that it is insufficient to

capture the consistent information and complex interactions among

the moment contexts. Particularly, the average pooling assumes

that the moments are linearly independent and equally contribute

to the final relevance estimation. Thereby, it fails to identify the

importance of each moment, and is unable to eliminate the useless

even noisy features.

To tackle the aforementioned problem, we consider to explicitly

capture the varying importance of each context moments by

assigning an attentive weight to the embedding of each moment

[37]. The detail of our memory attention is illustrated in Figure

3. Here we design a memory attention network by considering

two components contributing to the attentive weights. Given the

representation vector of the basic context moment xc j ∈ R
D1 and

the one of the given query q ∈ RD2 , we use a one-layer network

to estimate the attention score αc j , which explicitly reflects the

consistency between the moment and the query. Moreover, for

each moment in the contexts, we add the representations of the

prior moments to memorize the temporal information and model

the importance weights better. Formally, we present the memory

attention network as follows,⎧⎪⎪⎨⎪⎪⎩
e(c j ,q) = σ (

∑j
i=−nc

Wcxci + bc )
T · σ (Wqq + bq ),

αc j =
e (c j ,q)∑nc

k=−nc
e (ck ,q)

, j ∈ [−nc ,nc ],
(3)
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(a) Early Fusion.

(b) Cross-modal Fusion.

Figure 4: An illustration of the commonly used early

fusion and our proposed cross-modal feature fusion model.

Top: Early fusion (multimodal concatenation). Bottom: Our

proposed cross-modal feature fusion model with intra-

modal and inter-modal intersections.

where Wc ∈ RD×D1 and Wq ∈ RD×D2 are used to transform the

query and video embeddings to the same underlying embedding

space; bc ∈ RD and bq ∈ RD denote the trainable bias vector

for the moment and the query, respectively; and σ (·) is the tanh
activation function to restrict the attention weight to be in (0,1).

With the attention weight αc j , the fused featuremc is computed

as follows, {
x̂c j = Wcxc j + bc ,

mc =
∑
j ∈[−nc ,nc ] αc j x̂c j ,

(4)

where mc ∈ RD is the representation of the current moment c
attended by the current input query, andWc and bc are the common

space embedding matrix and bias vector in Eqn.(3), respectively.

As such, our memory attention network can leverage the context

weights of the various importance of each moment to enhance the

moment representations. And we can obtain the embedding query

feature,

q̂ = Wqq + bq , (5)

whereWq and bq respectively denote the query embedding matrix

and bias vector in Eqn.(3).

3.3 Cross-Modal Fusion Network

Previous multimodal studies do not leverage both intra-modality

and inter-modality dynamics directly. Instead, they apply the

commonly-used feature concatenation as an approach for mul-

timodal feature fusion (as shown in Figure 4(a)). This fusion

approach, nevertheless, does not efficiently model the inter-

modality dynamics.

In this paper, we aim to build a fusion sub-network that

disentangles unimodal and bimodal dynamics by modeling each of

them explicitly. Having established the attentive embedding, we

then obtain an enhanced moment representation. To estimate the

relevance between the moment and the query, we design a cross-

modal fusion network to explore the intra-modal and inter-modal

embedding interactions. The former is implemented by the tensor

fusion operation to explicitly model the interactions between the

visual and textual embeddings. Meanwhile, the latter, implemented

by the concatenation operation, targets at retaining the information

within each individual modality. Thereafter, we concatenate these

intra-modal and inter-modal embeddings into a fused moment-

query representation.

As shown in the Figure 4(b), the cross-modal fusion network

consists of two parts: the mean pooling and the tensor fusion. Due

to the fact that high dimensional vectors will lead to expensive time

complexity when computing tensor fusion, we introduce a mean

pooling layer before conducting the tensor fusion. In particular,

assuming that we obtain a D-dimension moment embedding mc

and aD-dimension query embedding q̂ from the preceding memory

attention network. We aim to learn a dimension reduction and

high-level representation based upon mean pooling. Representation

learning based on mean pooling is equivalent to applying a linear

filter with the size n to each input embedding, and each entry in

the output is the mean of the corresponding size kernel window in

value. We employ the mean pooling layer on mc and q̂ to obtain

the dimension reduction and high-level representation features

m̃c and q̃ for the moment and the query, respectively. Hereafter,

we input these two embeddings into the tensor fusion model. The

tensor fusion, technically speaking, can be viewed as a differentiable

outer product between the visual representation m̃c and the query

representation q̃,

fcq =

[
m̃c

1

]
⊗

[
q̃

1

]
= [m̃c , m̃c ⊗ q̃, q̃, 1], (6)

where ⊗ indicates the outer product between vectors, and fcq is all

the possible combinations of the unimodal embeddings with three

semantically distinct subregions. The two subregions m̃c and q̃

form unimodal interactions in tensor fusion, and subregions m̃c ⊗ q̃

capture bimodal interactions in tensor fusion.

3.4 Learning

Above the tensor fusion sub-network fcq , we place a multi-layer

perceptrons (MLP) [12, 13, 38] to get the matching score of the

moment-query pair (c,q) as well as the localization offset between

the moment candidate and the golden moment (ts − τs , te − τe ).
Formally, the hidden layers are defined as follows6,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e1 = θ1(W1fcq + b1),

e2 = θ2(W2e1 + b2),

· · ·

eL = θL(WLeL−1 + bL),

(7)

where Wl , bl , θl and el denote the weight matrix, bias vector,

activation function, and output vector of the l-th hidden layers,

respectively. As for the activation function in each hidden layer,

6In our experiments, the number of layers in MLP is set as two.
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we opt for the ReLU unit. Particularly, the out vector eL =

[scq ,δs ,δe ] ∈ R3 comprises of the matching score scq and the

localization offsets of δs = ts − τs and δe = te − τe .
Therefore, the loss function of our proposed model consists of

two parts: one is utilized to compute the loss of the alignment

scores, and the other is on the localization offsets. In the following

subsections, we will detail them one by one.

3.4.1 Alignment Loss. Similar to the spirit in [10], we adopt the

alignment loss to encourage the aligned moment-query pairs to

have positive scores and misaligned pairs to have negative scores.

Formally, we restate it as,

Laliдn = α1
∑

(c,q)∈P

log(1 + exp(−scq ))

+α2
∑

(c,q)∈N

log(1 + exp(scq )),
(8)

where P is the set of positive moment-query pairs, namely aligned

moment-query pairs; N is the set of negative moment-query pairs,

namely misaligned moment-query pairs; and α1 and α2 are the

hyper parameters controlling the weights between the positive and

the negative moment-query pairs.

3.4.2 Localization Regression Loss. As the multi-scale temporal

sliding window is adopted to segment videos, different moment

candidates have different durations. Hence for each moment-query

pair, we need to not only judge whether the moment is relevant to

the query, but also decide the localization offsets compared to the

golden moment. Here we adopt the moment boundary adjustment

strategy presented in [11]. Formally, we denote the offset values

for the start and end points as follows,{
δ∗s = ts − τs ,

δ∗e = te − τe ,
(9)

where (ts , te ) is the start and end points of the given query, and

(τs ,τe ) is the start and end points of a candidate moment in P.

Meanwhile, we use δ∗ = [δ∗s ,δ
∗
e ] to denote the ground truth

localization offsets.

Based on the ground truth offsets, we can adaptively adjust

the alignment points of the current moments to match the exact

temporal duration. Towards this end, we design a location offset

regression modal as,

Lloc =
∑

(c,q)∈P

[R(δ∗s − δs ) + R(δ∗e − δe )], (10)

where P is the set of positive moment-query pairs and R is the L1
norm function.

We devise the optimization framework consisting of the

alignment loss and the localization regression loss processes, as,

L = Laliдn + λLloc , (11)

where λ is a hyper-parameter to balance the two losses.

4 EXPERIMENT

4.1 Data Description

4.1.1 TACoS. The first dataset is constructed by [25]. It is built

on the top ofMPII-Compositive dataset [27] and contains 127 videos.

Each video is associated with two type of annotations. One is the

Table 1: The summary of the TACoS and DiDeMo datasets.

Dataset # Videos # Queries # Moments Domain Video Source

TACoS 100 14,229 2,326 Cooking Lab Kitchen

DiDeMo 10,464 40,543 26,892 Open Flickr

fine-grained activity label with temporal annotation (i.e., the start

and end points). The other is natural language descriptions for the

temporal annotations. The dataset7 is used in [10] for temporal

activity localization, dubbed as TACoS.

We briefly describe the dataset construction process. In paper

[10], each training video is sampled by multi-scale temporal sliding

windows with size of [64, 128, 256, 512] frames and 80% overlap.

As for the testing samples, they are coarsely sampled using sliding

windows with size of [128, 256] frames. For a sliding window

moment c from C with temporal annotation (τs ,τe ) and a query

description q with temporal annotation (ts , te ), they are aligned as

a pair of training sample if they satisfy the following conditions:

1) the Intersection over Union (IoU) is larger than 0.5; 2) the

non Intersection over Length (nIoL) is smaller than 0.15; and 3)

one sliding window moment can be aligned with only one query

description. In the dataset, there are 75 training videos, 25 testing

videos, and 26,963 trainingmoment-query pairs satisfying the above

conditions. Besides, they utilized 3D ConvNets (C3D) [35] as the

moment-level visual encoder and Skip-thoughts [17] as the query

description embedding extractor. Therefore, the dimension of the

visual embedding and the query description embedding are 4,096

and 4,800, respectively.

4.1.2 DiDeMo. The second dataset is constructed by [2] for

language-based moment retrieval, named the Distinct Describable

Moments (DiDeMo) dataset8. It includes 10,464 personal videos

with duration of 25-30 seconds, 26,892 video moments, and 40,543

localized descriptions. Descriptions in DiDeMo refer to expressions,

describing the specific moments in a video. What is more, the

construction of the DiDeMo dataset contains a verification step

to ensure that the descriptions align with a single moment within

a video. In the dataset, each video is broken into six five-second

moments and represented by a 6 × 4096 feature matrix, where

each column represents a 4,096-d VGG [29] feature of one moment.

For language features, they adopted 300 dimensional dense word

embeddings Glove [24] to represent each word.

The statistics of the datasets are summarized in Table 1. The

reported experimental results in this paper are based on datasets

mentioned above9. Besides, we carried out experiments with the

help of Tensorflow, selecting function AdamOptimizer as our

optimizer. We trained it over a server equipped with 16 Tesla K80s.

4.2 Experimental Settings

4.2.1 Evaluation Protocols. To thoroughly measure our model

and the baselines, we adopt “R@n, IoU=m” proposed by [15] as

the evaluation metric. To be more specific, given a query, it is

the percentage of top-n results having IoU larger thanm. In the

following, we use R(n,m) to denote “R@n, IoU=m”. This metric

7https://github.com/jiyanggao/TALL.
8https://github.com/LisaAnne/LocalizingMoments.
9In the following experiments, we set the context moment number nc as 1. And the
length of context window is set as 128 frames on the TACoS dataset and 5 seconds on
the DiDeMo dataset.
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Table 2: Performance comparison between our proposed

model and the state-of-the-art baselines on TACoS. (p-

value∗: p-value over R(1, 0.5))

Method
R@1 R@1 R@1 R@5 R@5 R@5

p-value∗
IoU=0.5 IoU=0.3 IoU=0.1 IoU=0.5 IoU=0.3 IoU=0.1

MCN 1.25% 1.64% 3.11% 1.25% 2.03% 3.11% 3.62E-10

VSA-STV 8.84% 13.59% 17.58% 16.41% 26.40% 35.86% 2.16E-06

VSA-RNN 9.96% 16.16% 20.92% 18.32% 29.19% 40.66% 1.82E-05

TALL 12.46% 16.85% 21.69% 24.44% 33.38% 45.38% 5.71E-05

ACRN 14.62% 19.52% 24.22% 24.88% 34.97% 47.42% -

itself is on the query level, so the overall performance is the average

among all the queries,

R(n,m) =
1

Nq

Nq∑
i=1

r (n,m,qi ), (12)

where r (n,m,qi ) is the recall [3] for a query qi , Nq is the total

number of queries, and R(n,m) is the averaged overall performance.

4.2.2 Baselines. We compared our proposed ACRN with

the following several state-of-the-art baselines to justify the

effectiveness of our proposal:

• TALL [10]: This is a cross-modal temporal regression

localizer that jointly captures the interaction between the

query description and video moments, as well as outputs

alignment scores and action boundary regression results for

the moment candidates.

• MCN [2]: This method is designed for the moment-query

retrieval task. It emphasizes the local and global moment

features, aiming to strengthen the expressiveness ability.

• VSA-RNN [10]: This method is the variant of the

Deep Visual-Semantic Alignment (DVSA) model [16]. It

transforms the local visual feature and the texture feature

encoded by the LSTM model into a common space, and then

estimates the matching score of each moment candidate and

the query (as formulated in Eqn.(1)).

• VSA-STV [10]: Instead of using RNN to extract the query

description embedding, this work uses an off-the-shelf Skip-

thoughts [17] sentence embedding extractor. A skip-thought

vector is in the 4,800-dimensional space, and we linearly

transformed it to 1,000 dimension. Visual encoder is the

same with that of the VSA-RNN.

Note that VSA-RNN and VSA-STV are two baseline models in [10],

but the source codes and the involved parameters are not released

by the authors. We implemented these two models by our own,

and tried our best to tune their parameters to achieve the optimal

performance. In our paper, we represented each word with 500

dimensional dense word embeddings (specifically Glove [24]) when

training the VSA-RNN. The size of the hidden state of LSTM is

1,024 and the output size is 1,000. Video moments are processed

by a visual encoder and linearly transformed to 1,000 dimensional,

which are used as the moment-level embeddings. Besides, cosine

similarity is used to calculate the confidence score between the

moment candidates and the given query. And hinge loss is used to

train the two models, which is defined as follows,

L =
∑
k

[
∑
l

max(0, skl − skk + 1) +
∑
l

max(0, slk − skk + 1)], (13)

Table 3: Performance comparison between our proposed

model and the state-of-the-art baselines on DiDeMo. (p-

value∗: p-value over R(1, 0.5))

Method
R@1 R@1 R@1 R@5 R@5 R@5

p-value∗
IoU=0.5 IoU=0.7 IoU=0.9 IoU=0.5 IoU=0.7 IoU=0.9

MCN 23.33% 15.37% 15.32% 41.03% 20.37% 19.77% 6.14E-09

VSA-STV 25.38% 14.49% 14.39% 68.56% 26.92% 24.24% 1.98E-03

VSA-RNN 24.94% 14.52% 14.44% 68.39% 26.10% 23.95% 3.31E-06

TALL 26.45% 15.36% 15.31% 68.78% 28.43% 26.15% 2.32E-02

ACRN 27.44% 16.65% 16.53% 69.43% 29.45% 26.82% -

where k is the index of moment candidates, l is the index of query
descriptions, skk denotes the cosine score of the aligned moment-

query pair, and skl or slk denotes the cosine score of the misaligned

moment-query pair.

4.3 Performance Comparison

Table 2 displays the performance comparison w.r.t. R(n,m) on

TACoS. We have the following observations:

• VSA-STV and VSA-RNN achieve poor performance since

they overlook the context information of moment candidates.

They hence fail to exploit the spatial-temporal cues to guide

the retrieval process, highlighting the necessity of modeling

the context in moment retrieval.

• While MCN considers the features from the surrounding

moments, it treats the average pooling of all the context

representations as the context of each current candidate,

ignoring the adaptive importance of the context moments.

Assigning equal importance with each context moments may

lead to introduce noisy features and lead to negative transfer.

That is why MCN achieves the unstable performance on

two datasets. It hence verifies the feasibility of revising the

attention weight of each context moment.

• When performing our moment retrieval task, TALL

outperforms MCN, VSA-STV and VSA-RNN. The observed

results make sense since TALL is capable of exploiting the

interactions across the visual and textual modalities and

strengthens the expressiveness of the moment-query pairs.

• ACRN achieves the best performance, substantially surpass-

ing all the baselines. Particularly, ACRN shows consistent im-

provements over TALL and MCN, verifying the importance

of memorizing the context information and employing the

attention mechanism on identifying the adaptive importance

attention of each context moment.

We also evaluated our proposed ACRN model and the baseline

methods on DiDeMo, and reported the results regarding IoU∈{0.5,

0.7,0.9} and R@{1, 5}. Note that since the positive moment-query

pairs in this dataset are well aligned, namely there are no location

offsets between them, we only used the alignment loss to train the

ACRN and TALL model for localizing the corresponding moment.

The results are shown in Table 3. It can be seen that the results

are consistent with those on TACoS. ACRN shows a significant

improvement over non-attention models (TALL and MCN) and

non-context models (VSA-RNN and VSA-STV).

In addition, we also conducted the significance test between our

model and each of the baselines. We can see that all the p-values

are substantially smaller than 0.05, indicating that the advantage of

our model is statistically significant.

Session 1A: New IR Applications SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

21



0.1 0.2 0.3 0.4 0.5
24

26

28

30

32

34

36

38

R
@
1

IoU

ACRN
ACRN-a
ACRN-m
ACRN-c

(a) R@1 vs IoU on DiDeMo

0.6 0.7 0.8 0.9 1.0
25

26

27

28

29

30

31

32

33

R
@
5

IoU

ACRN
ACRN-a
ACRN-m
ACRN-c

(b) R@5 vs IoU on DiDeMo

0.1 0.2 0.3 0.4 0.5
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

R
@
1

IoU

ACRN
ACRN-a
ACRN-m
ACRN-c

(c) R@1 vs IoU on TACoS

0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

12

14

16

18

20

R
@
5

IoU

ACRN
ACRN-a
ACRN-m
ACRN-c

(d) R@5 vs IoU on TACoS

Figure 5: Performance comparison among ourmodel variants on the TACoS dataset and the DiDeMo dataset. From left to right:

(a) is the R@1 vs IoU ∈ {0.1, 0.2, 0.3, 0.4, 0.5} on the DiDeMo dataset; (b) is the R@5 vs IoU ∈ {0.6, 0.7, 0.8, 0.9, 1.0} on the DiDeMo

dataset; (c) is the R@1 vs IoU ∈ {0.1, 0.2, 0.3, 0.4, 0.5} on the TACoS dataset; (d) is the R@5 vs IoU ∈ {0.6, 0.7, 0.8, 0.9, 1.0} on the

TACoS dataset.

4.4 Study of ACRN

In the following section, we first explore how our proposed memory

attention network and cross-modal fusion network affect the

moment retrieval results. We then visualize the alignment and

offset regression process of our proposed ACRN.

4.4.1 Component-Wise Comparison. We experimented with

variants of our model to verify the effectiveness of the memory

attention and cross-modal fusion networks:

• ACRN-a: We utilized the average pooling in Eqn.(2)

to replace our proposed memory attention network for

memorizing the context embeddings.

• ACRN-m: We eliminated the memory part of our memory

attention model in Eqn.(3). That is, each context attention

value is only related to itself and the query without

considering the context information.

• ACRN-c: Instead of using cross-modal fusion model

in Eqn.(6), we adopted the early fusion strategy, i.e.,

concatenating the multimodal feature.

We tested these model variants on the TACoS and DiDeMo dataset,

respectively. And the component-wise comparison results are

shown in the Figure 5.

By jointly analyzing Figure 5, we have the following findings:

• As Figures 5(a) and 5(b) demonstrate, ACRN outperforms

ACRN-a by a large margin on the DiDeMo dataset, and

achieves considerable improvement on the TACoS dataset as

shown in the Figures 5(c) and 5(d). It reveals that simply

operating average pooling is insufficient to capture the

consistent information and underlying interactions among

the moment contexts. As average pooling assumes that

the context moments are linearly independent and equally

contributing to the final relevance estimation. It hence fails to

identify the adaptive importance of each moment and hardly

eliminates the irrelevant even noisy features. Therefore, the

improvement achieved by ACRN verifies the effectiveness

of the attention mechanism.

• The performance of ACRN-m indicates that removing

the memory attention network hurts the expressiveness

of the moment representation and further degrades the

retrieval performance. Particularly, ACRN-m assumes that

the representation of one moment candidate is independent

with its surrounding context moments, which cannot exploit

the spatial-temporal information encoded in the contexts.

Taking the advantage of the memory attention network,

ACRN is capable of enriching the moment representation.

• ACRN shows consistent improvement over ACRN-c on

two datasets, verifying the crucial influence of modality

interaction. Concatenation of the moment and query

representations models the intra-modal interactions solely

and limits the expressiveness of themoment-query pairs’ rep-

resentations. Our proposed cross-modal fusion network can

exploit the intra-modal and inter-modal feature interactions

and further enhance the moment-query representations.

4.4.2 Qualitative Results. To gain the deep insights into our

proposed ACRN model, we show an example of moment retrieval.

The video illustrated in Figure 6 describes a complex cooking scene,

in which a man firstly took out a glass from the cupboard and placed

it on the countertop, and then he went back to the cupboard and

took out a second glass. Later, he cracked an egg from the fridge and

drained the egg white by holding the halves of the shell together

over the glass. We choose the description “He took out a glass”

from the dataset as the given query, and utilize the aforementioned

models to retrieve the relevant moments. From the results shown

in the Figure 6, we observe that:

• As Figure 6(b) illustrates, MCN returns a moment that “The

man drained the egg white” from themoment candidates, not

the moment that “He took out a glass”. Although it considers

the local moment feature and the global feature, MCN forces

all the background moment contexts as the global feature

to enhance the representation of the visual embedding. As

most of the moment candidates within this video are related

to the scene “cracked egg and drained egg white”, the global

visual embedding fails to represent the desired scene.

• Both VSA-STV and VSA-RNN return a moment contain two

sub-scenes which are “He took out a glass” and “ He took a

second glass”, as shown in Figure 6(c) and 6(d), respectively.

Because these two models only consider the current moment

information instead of the temporal context information,

they cannot identify the relative order of the moments.

Hence, they only return all frames contain the action “took”

and object “glass” as the output. The poor performance
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(a) The golden moment of the moment retrieval.

(b) The moment retrieval result of the MCN.

(c) The moment retrieval result of the VSA-STV.

(d) The moment retrieval result of the VSA-RNN.

(e) The moment retrieval result of the TALL.

(f) The moment retrieval result of the ACRN.

Figure 6: Moment retrieval results on the TACoS dataset.

All of the above figures are the R@1 results. The gray,

blue and green bars denote the time line of the ground

truth, alignment result and regression fine tune result,

respectively.

admits the importance of the spatial-temporal information

within the surrounding context.

• TALL generates more accurate alignment result than MCN,

VSA-STV, and VSA-RNN, as Figure 6(e) displays. This

certifies the importance of cross-modal fusion, which

enriches the moment-query representations by modeling

the intra-modal and inter-modal feature interactions.

• Our alignment retrieval performs better than all the state-

of-the-art baselines. As shown in Figure 6(f), our alignment

result has larger IoU with the golden moment. Moreover,

ACRN generates better result than TALL. Although TALL

model utilizes context information, it respectively pools the

pre- and post-contexts into one vector and then concat them

with the current moment to enhance the visual embedding. It

ignores the complex interactions among contexts and fails to

identify the importance of each moment, therefore it misses

some important cues. This indicates the effectiveness of our

proposed attentive moment retrieval network.

• Even in the case that the alignment retrieval results have

small IoU with the golden moment, ACRN and TALL can

correct the alignment time points via their regression part

and further provide a more accurate result. This highlights

the effectiveness of the location offset regression. In addition,

our proposed ACRN further performs better offsets than

TALL, this demonstrates that the ACRN can generate better

moment-query representation.

5 CONCLUSION AND FUTUREWORK

In this paper, we develop an attentive cross-modal retrieval scheme

to retrieve specific moments from a long video responding to

a given query. To well align the moment candidates and the

given query, we design a memory attention model to dynamically

compute the visual attention over the query and its context

information. Meanwhile, we adopt a cross-modal fusion sub-

network to incorporate cross-modal information into the moment-

query alignment. To evaluate our model, we perform extensive

experiments on two public datasets. And the results show that our

model can achieve better performance compared to the state-of-

the-art baselines.

In future, we will extend our work in three directions. First,

we plan to design an end-to-end model, which observes the

moments and decides both where to look at next and when to

make a prediction. It will not need to pre-segment videos with

multi-scale sliding windows, and can quickly narrow down the

searching space. Second, we shall study different attention networks

on frame-level and incorporate them into our model, because

different parts of a frame have varying influences on the scene

and query understanding. Third, we will consider our framework

in personalizedmoment recommendation, where the retrieval result

is relevant to personal interests of users. In particular, when given

a video, the personal query history is treated as the user-item

interactions similar in [4, 13, 39] to better capture a user’s preference

towards moments.
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