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ABSTRACT
Many professional organizations produce regular reports of social
indicators to monitor social progress. Despite their reasonable
results and societal value, early e�orts on social indicator
computing su�er from three problems: 1) labor-intensive data
gathering, 2) insu�cient data, and 3) expert-relied data fusion.
Towards this end, we present a novel graph-based multi-channel
ranking scheme for social indicator computation by exploring
the rich multi-channel Web data. For each channel, this scheme
presents the semi-structured and unstructured data with simple
graphs and hypergraphs, respectively. It then groups the channels
into di�erent clusters according to their correlations. A�er that, it
uses a uni�ed model to learn the cluster-wise common spaces,
perform ranking separately upon each space, and fuse these
rankings to produce the �nal one. We take Chinese university
ranking as a case study and validate our scheme over a real-world
dataset. It is worth emphasizing that our scheme is applicable
to computation of other social indicators, such as Educational
a�ainment.
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1 INTRODUCTION
Social indicators are de�ned as statistical measures and analytics
that describe social trends and conditions that would impact social
well-being [14]. A social indicator is usually in the form of a ranking
list that orders the entities of interests according to some pre-
de�ned rules. In the past few decades, professional organizations,
such as mass media, academic institutes, and government agencies,
have calculated and released hundreds of social indicators on
di�erent facets of our society, including cost of living [7], health
expenditure [17], happiness index [35], and university quality [23].
Generally, social indicators have some key functions, spanning
from providing information for decision-makers, monitoring and
evaluating policies, to searching for a common good [3]. For
instance, university ranking plays a pivotal role in selecting
universities for high school students. Meanwhile, university
rankings are mirrors for university themselves to improve their
education and research quality. �erefore, the accuracy and timely
creation of these indicators are extremely useful to a wide variety
of users and applications, including the formulation of government
policies and planning of social services.

Most of the released social indicators are typically computed in
two steps: given a set of entities to be ranked, they �rst calculate
the scores of these entities according to several factors related to the
desired social indicator and then fuse the scores using hand-cra�ed
weights to rank the entities. For instance, universities in QS World
University Ranking 2016/17 are ranked by scores weighted upon
six factors: academic reputation, employer reputation, student-to-
faculty ratio, citations per faculty, international student ratio, and
international faculty ratio1. However, such computation process
usually su�ers from the following problems: 1) Labor-intensive
data collection. Data used to calculate social indicators usually rely
heavily on user studies like questionnaire, especially, for subjective
factors, such as the academic and employment reputation in the QS
Ranking. It thus requires a lot of human resources and the collected
data can hardly be applied to compute other social indicators. 2)
Data insu�ciency. Existing social indicators usually only cover a
small fraction of target entities. For example, there indeed exist
2,553 universities in China2, while most university rankings involve
only less than 800 universities. �at is because it is non-trivial
to carry out a large-scale user study to gather comprehensive
information for each target entity. 3) Expert-relied data fusion.

1h�p://tinyurl.com/zj9vgnj/.
2h�p://tinyurl.com/zcbumn3/.
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Factor weighting policies rely heavily on experts and di�erent
weighting policies may lead to distinct social indicator results.
Although we believe that we can �nd the outstanding experts
and generate reasonable social indicator results, it is extremely
resource-consuming.

With the fast development of Internet, we are able to collect large-
scale and multi-facet data to describe any given entities from the
Web, such as interactions and opinions shared in social networking
services (SNSs), timely news reports in online mass media, and
purchase history in e-commerce platforms. In a sense, the publicly
accessible online data enable us to alleviate the aforementioned
data collection and scarcity problems, and save human labors.
Considering the university ranking as an example, rich data from
multiple channels can be gathered to comprehensively describe
each university: 1) O�cial statistics about students and teachers
are available in platforms of the Ministry of Education (MOE) and
various educational organizations. 2) Important events related to
universities are updated on the website of mass media in real time.
3) Academic records are accessible through online bibliographic
database like Microso� Academic3. 4) Employment status of
graduate students are shared in business and employment-oriented
SNSs, such as LinkedIn4. 5) University-related comments and
opinions from general users are shared in the mainstream social
media like Twi�er5.

Much related works have been conducted to rank entities
with multi-channel data. For example: 1) Early fusion, which
concatenates all the extracted features from di�erent channels into
a single feature vector before feeding it into ranking models [9]; 2)
Late fusion, which analyzes data from each channel separately and
then aggregates their ranking results [13]; 3) Joint learning that
simultaneously learns ranking from each channel and encourages
the rankings to be consistent with others [16]; 4) Subspace learning,
which derives compact latent representations by taking advantage
of inherent structures and relations across multiple channels
before ranking the entities based upon the latent representations
[10, 28, 36]. However, none of these methods is suitable to
compute social indicators, since social indicator computation has
the following characteristics: 1) Complex channel relations. �e
correlation may be strong among some channels, while it may be
very weak among others. �erefore, it will cause information loss if
all channels are equivalently projected into the same space. 2) Data
heterogeneity. �ere are both semi-structured and unstructured
data on the Web. For instance, the tables and statistics in webpages
are semi-structured; whereas, texts, images, and videos in mass
media reports and social media posts are unstructured. 3) Ranking
smoothness. Generally speaking, the latest social indicator is
consistent with the last update to some extents, because the target
entities in the ranking progress relatively slowly during a short
duration. 4) Insu�ciency and block-wise missing data for entities.
It is not unusual that a social indicator involves up to only hundreds
of entities, which constraints the usability of complicated methods
relying on large-scale training samples, such as deep learning
models. Besides, some channel data may be missing for some
entities. For example, in university ranking, academic records of
3h�ps://academic.microso�.com/.
4h�ps://www.linkedin.com/.
5h�ps://twi�er.com/.

some unpopular universities, such as the Taishan University6, may
not be available, as they seldom publish papers in international
conferences or journals.

To address the aforementioned problems, we present a novel
graph-based multi-channel ranking scheme (GMR). In particular,
we �rst collect multi-channel Web data corresponding to the given
social indicator and extract a set of features from each channel
to represent the candidates. For each channel, we construct a
simple graph and a hypergraph on its features from semi-structured
and unstructured data, respectively. Following that, we calculate
the graph Laplacian for each graph, and cluster all the graphs
into groups based on the correlations between their Laplacian
matrices7. �us, the involved channels in each cluster are strongly
correlated. In the light of this, we derive a common space for each
cluster and perform a graph-based ranking upon this common
space. It is worth mentioning that we di�er the entities with
all channel data from those with block-wise missing data, when
learning the cluster-wise common space. �is strategy can avoid
baised common representations caused by data incompletion [42].
Simultaneously, we fuse ranking results learned from di�erent
clusters to produce the �nal one. To enforce ranking smoothness,
the aggregated result over di�erent clusters is further regularized
by the historical rankings. In this work, we apply the proposed
generic scheme to address the Chinese university ranking problem,
as shown in Figure 1. In particular, this scheme �rst collects multi-
channel Web data, ranging from o�cial data, mass media reports,
academic records, employment status of graduate students, to
public comments. It then extracts a rich set of features from each
channel to comprehensively represent the universities and then
feeds the features into the model of GMR to generate the university
ranking. Extensive experiments have well-veri�ed our approach. It
is worthwhile highlighting that our ranking scheme is extendable
to other social indicator computation, such as the cost of living.

�e main contributions of this paper are threefold:
• We present a novel graph-based multi-channel ranking

scheme towards social indicator computation. It inherits
the advantages of late fusion and subspace learning by
performing ranking in the cluster-wise common space.

• We successfully take the Chinese university ranking as a
case study of social indicator computation.

• We released the involved codes and our constructed data
to facilitate the research community8.

�e remainder of this paper is structured as follows. Section 2
reviews the related work. In Section 3, we introduce our proposed
scheme. In Section 4, we apply our scheme to Chinese university
ranking. Experimental se�ings and results are reported in Section
5, followed by conclusion and future work in Section 6.

2 RELATEDWORK
Our work is related to recent studies on multi-view subspace
learning, unsupervised ranking, and university ranking.

6h�p://www2.tsu.edu.cn/www/ywbtsu/.
7It is worth emphasizing that some channels may be placed into two clusters since
they have one simple graph and one hypergraph Laplacian matrices. �is is reasonable
since semi-structured and unstructured data may convey di�erent topics and hence
may have di�erent correlations with others.
8h�ps://github.com/hennande/cur/.
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Figure 1: Schematic illustration of social indicator computing and a case study of Chinese university ranking.

2.1 Multi-view Subspace learning
Subspace learning is a widely explored technique to analyze multi-
view data. It aims to obtain compact latent representations by
leveraging underlying structures and relations across multiple
views. Typically, multiple views are mapped into a common
space by di�erent algorithms [40], including canonical correlation
analysis [15], dictionary learning [4], matrix factorization [20, 29,
41]. In addition, the latent representations are further regularized
to be sparse with di�erent norms [34]. Apart from the shallow
learning methods, subspace learning is also explored with deep
learning models, such as deep restricted Boltzmann machines
[31], deep feedforward networks [2, 43], and deep autoencoders
[39]. In summary, although great success has been achieved by
these models, few of them simultaneously consider the di�erence
between unstructured and semi-structured data, let alone block-
wise data missing.

2.2 Unsupervised Ranking
Unsupervised ranking is a popular technique to produce permutation
of entities without labled data. Studies on unsupervised ranking
are roughly separated into two categories based on whether the
entities have direct linkages: 1) Linkage-based ranking. �ese
methods infer rank of entities from the link structure information.
For example, PageRank [33] and HITS [24] estimate the importance
of webpages from the hyperlinks jumping to the given page.
Standing on the shoulder of them, a couple of improvements have
been presented. For instance, PopRank [32] further handles Web
spam and heterogeneous graphs. BrowseRank [27] integrates the
metadata of user behaviors. BiRank [19] expanded it to the bipartite
graph. And 2) similarity-based ranking. Similarity-based ranking
algorithms enforce that similar entities obtain close ranks. For
example, Agarwal [1] constructed a graph, where vertices and
edges respectively represent entities and similarity between them,
and derived rankings from the Laplacian of the graph. Zhou et al.
[44] replaced the conventional graph Laplacian with an iterated
and unnormalized one to improve the robustness. Cheng et al.
[11] further considered the entity redundancy with sink points in
the Laplacian. In addition, Bu et al. [9] utilized the hypergraph

instead of the simple one to represent the entities. Yet, most of the
aforementioned methods are designed to process single view data.

2.3 University Ranking
Traditional university rankings, such as the U.S.News & World
Report9, Times Higher Education10, and QS11, usually measure
the qualities of universities with a few pre-de�ned factors, such
as research reputation and academic reputation. �ese factors
are then fused with human designated weights to obtain the �nal
ranking scores. In China, several university rankings are calculated
in a similar process by distinct organizations like the Chinese
Universities Alumni Association (CUAA)12, Research Center for
China Science Evaluation (RCCSE)13, and Chinese Academy of
Management Science (CAMS)14. It is clear that the performance of
these ranking systems highly depends on these pre-de�ned factors
and heuristic weights.

Instead of heuristic weights, some researchers a�empted to fuse
factors with statistical methods. Guarino et al. [18] applied the
Bayesian latent variable analysis to learn the weights. Dobrota et
al. [12] used I-distance values to estimate the weights based on
data from previous years. In addition, some a�empts have been
done to rank universities with new factors. Lages et al. [25] ranked
universities by the importance of their corresponding Wikipedia
pages. Kapur et al. [23] utilized LinkedIn Economic Graph data to
rank universities by employment of graduates. To sum up, these
aforementioned ranking methods pay more a�ention to weight
tuning or calculating speci�c factors. With the multi-channel Web
data, our ranking method explores multi-facets of universities and
thus ranks the university precisely.

3 METHODOLOGY
We �rst de�ne some notations. In particular, we use bold capital
le�ers (e.g., X) and bold lowercase le�ers (e.g., x) to denote matrices

9h�p://www.usnews.com/rankings.
10h�ps://www.timeshighereducation.com/.
11h�p://www.qs.com/.
12h�p://www.cuaa.net/cur/.
13h�p://www.nseac.com/html/168/.
14h�p://edu.sina.com.cn/gaokao/wushulian/.

Session 4B: Retrieval Models and Ranking 2 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

457

http://www.usnews.com/rankings
https://www.timeshighereducation.com/
http://www.qs.com/
http://www.cuaa.net/cur/
http://www.nseac.com/html/168/
http://edu.sina.com.cn/gaokao/wushulian/


and vectors, respectively. We employ non-bold le�ers (e.g., x) to
represent scalars, and Greek le�ers (e.g., λ) to represent parameters.
In addition, tr (X) denotes the trace of X. If not clari�ed, all vectors
are in column forms.

�e social indicator computation is formalized as: given a list of
N entities, a historical ranking list of all the entities y ∈ RN , and the
latest entity descriptions fromM channels, {[Xs1 ,Xu1 ], [Xs2 ,Xu2 ],
· · · , [XsM ,XuM ]}, social indicator computation is to learn a new
ranking list f ∈ RN by harvesting the current data and the historical
ranking list. �ereinto, Xsm ∈ RN×Dsm and Xum ∈ RN×Dum

are the features extracted from semi-structured and unstructured
data from the m-th channel; and y refers to the latest released
social indicator by professional organizations. For example, if the
desired social indicator is Chinese university ranking in 2017, ywill
be the ranking results in 2016. To compute social indicators, we
present a novel graph-based multi-channel ranking framework: 1)
We �rst construct a simple graph on the semi-structured data and a
hypergraph on the unstructured data for each channel. 2) We then
cluster all the graphs into groups based on the correlation of their
Laplacian matrices. 3) We ultimately learn a cluster-wise ranking
list and fuse them together within a tailored objective function.

3.1 Graph Construction
In some channels, there indeed exist both semi-structured and
unstructured data to describe the given entities. Semi-structured
ones are of higher quality and thus more discriminative. On the
contrary, the unstructured data are more noisy. As their distinct
structures and features, we refuse to naively merge the semi-
structured and unstructured data. Inspired by that simple graph is
sensitive to the data noise; whereas the hypergraph is typicallymore
robust but less discriminative than the simple one [15], we leverage
the simple graph and hypergraph to represent the entities and their
relations. For each channel, we construct a simple graph over the
semi-structured data and a hypergraph over the unstructured ones
so that we neither sacri�ce the discrimination of semi-structured
data nor be a�ected by the noisy unstructured ones.

3.1.1 Simple Graph Construction. In a simple graph, vertices
represent entities and edges refer to their pairwise similarities. A
simple graph with N vertices is represented by an incidence matrix,
W ∈ RN×N and a diagonal vertex degree matrix, D ∈ RN×N ,
whereWi j is the similarity between the i-th and j-th vertices; Dii =∑N
j=1Wi j is the degree of the i-th vertex. GivenXsm ,W is estimated

as,

Wi j =

{
exp(−‖xsmi − x

sm
j ‖

2/2σ 2), if i , j,

0, otherwise,
(1)

where the radius parameter σ is simply set as the median of the
Euclidean distances of all pairs. Following [1], we then calculate
the normalized graph Laplacian matrix as,

Lsm = D−1/2(D −W)D−1/2. (2)

3.1.2 Hypergraph Construction. Generalized from a simple
graph where an edge links pairwise vertices, an edge in a
hypergraph connects a set of vertices to represent the �nitary
relations. A hypergraph with N vertices and P edges is represented
by an incidence matrix H ∈ RN×P , edge degree matrix E ∈ RP×P ,

edge weight matrix W ∈ RP×P , and vertex degree matrix V ∈
RN×N , where Hi j = 1 if the i-th vertex is connected by the j-
th edge, otherwise Hi j = 0; E, W, and V are diagonal matrices
with Ej j =

∑N
i=1 Hi j , Wj j as the weight of the j-th edge, and

Vii =
∑P
j=1Wj jHi j . Following [9], given Xum , we calculate the

hypergraph Laplacian matrix with,

Lum = V−1/2(V − HWE−1HT )V−1/2. (3)

In particular, we construct the j-th edge by connecting the k-most
similar vertices to the j-th vertex Nj (xumj ) and estimate the weight
of the j-th edge by,

Wj j =
∑

xumi ∈Nj (x
um
j )

exp(−‖xumi − x
um
j ‖

2/2σ 2). (4)

3.2 Channel Clustering
A�er graph construction, the original multi-channel descriptions
{[Xs1 ,Xu1 ], [Xs2 ,Xu2 ], · · · , [XsM ,XuM ]} are mapped to the
Laplacian representations {[Ls1 , Lu1 ], [Ls2 , Lu2 ], · · · , [LsM , LuM ]}.
It is not wise to directly fuse all graphs by conventional multi-
view ranking techniques, because the correlation among some
channels may be very strong, and it may be veryweak among others.
�erefore, some informationmay be lost if they are indiscriminately
projected to a common space. Towards this end, we �rst divide
all the graphs into groups based on the correlations between
their Laplacian matrices with spectral clustering [37]. During the
clustering, the distance between two Laplacianmatrices is estimated
by Hilbert-Schmidt Independence Criterion (HSIC),

dis(Li, Lj) = HSIC(Li, Lj,ϕ,φ) = (N − 1)2/tr (PHQH), (5)

where ϕ and φ are the kernel functions of the i-th and j-th matrices;
P and Q ∈ RN×N are the Gram matrices with Pmn = ϕ(lim, lin) and
Qmn = φ(ljm, l

j
n); H = I − N−2I1 ∈ RN×N centers the Gram matrix

to have zero mean, where I and I1 respectively denote identity and
all-one matrices.

3.3 Objective Function
Given the historical ranking list y and the clustered Laplacian
matrices in K groups, {{L11 , · · · , L1S1 }, · · · , {LK1 , · · · , LKSK }},
where Sk denotes the number of matrices in the k-th cluster. �e
desired ranking list f is learned via the following function:

Γ = min
L̂k,f,fk

1
2

K∑
k=1

lintra (L̂k, {Lk1 , · · · , LkSk })+

λ1
2

K∑
k=1

lman (L̂k, fk) +
λ2
2 linter (f , y, {f1, · · · , fk}), (6)

where lintra , lman , and linter respectively denote the loss of: 1)
intra-group fusion, 2) manifold ranking, and 3) inter-group fusion.
�e intra-group fusion aims to learn a common Laplacian matrix
L̂k ∈ RN×N to fuse the Laplacian matrices {Lk1 , · · · , LkSk } in the
k-th group. Upon the k-th common Laplacian matrix, the manifold
ranking learns a ranking list fk ∈ RN . Inter-group fusion combines
rankings from di�erent groups into the �nal ranking f . f is further
regularized by the historical ranking result y so that it satis�es the
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ranking smoothness. λ1 and λ2 are hyper-parameters to balance
the three kinds of loss.

3.3.1 Intra-group Fusion. �e intra-group fusion leans a
common Laplacian matrix L̂k to fuse the Laplacian matrices in
the k-th group {Lk1 , · · · , LkSk } by minimizing lintra ,

1
2

Sk∑
i=1

tr
(
(L̂k − Lki )T Ski (L̂k − Lki )

)
. (7)

�ereinto, Ski ∈ RN×N is a diagonal matrix with,

Skij j =

{
0, if the j-th entity misses the i-th channel,
1, otherwise.

(8)

It is a selector to avoid the biases in the common Laplacian caused
by data missing. A toy example with two graphs shown in Figure
2 illustrates the e�ects of the selector. In the example, data of the
n-th entity in the k1-th graph are missing. �us, Sk1 and Sk2 are set
as I ∈ RN×N except Sk1nn = 0. So entries related to the n-th entity
in the common Laplacian learned by the intra-group fusion are the
same as those in Lk2 . However, those entries could be bias towards
zero if there is no selectors in the intra-group fusion. �is is why
we claim by integrating selectors, our intra-group fusion alleviates
the impacts of data missing.

3.3.2 Manifold Ranking. Given a common Laplacian matrix L̂k,
manifold ranking learns a ranking list fk, where similar entities
obtain close ranks, via,

min
fk

lman (L̂k, fk) = fk
T
L̂kfk. (9)

3.3.3 Inter-group Fusion. As aforementioned, di�erent local
ranking lists are learned from di�erent clusters, i.e., we have
{f1, f2, · · · , fK}. �e inter-group fusion learns a set of weights
b = [b1,b2, · · · ,bK ] ∈ RK to get the desired ranking f =

∑K
k=1 bk f

k

and regulates the fused ranking to be smooth with the historical
one by minimizing linter ,

(
K∑
k=1

bk f
k − y)TC(

K∑
k=1

bk f
k − y), s .t .

K∑
k=1

bk = 1, (10)

where C ∈ RN×N is diagonal matrix with Cj j = c j . c j is the pre-
calculated weight of the j-th entity controlling the entity-aware
ranking smoothness. Taking university ranking as an example, c j
is large for top universities while small for bo�om ones.

3.4 Optimization
We adopt the alternating strategy to optimize the proposed model,
until it converges.

3.4.1 Computing L̂k. To ease the optimization of L̂k, we set each
common Laplacian as,

L̂k =
Sk∑
i=1

aki L
ki , s .t .

Sk∑
i=1

aki = 1, (11)

and optimize each L̂k independently keeping f and b �xed. A�er
removing the �xed parts and substituting the constraint

∑Sk
i=1 ai = 1

with Lagrange multipier δ , the objective function is rewri�en as,

min
ak

1
2

Sk∑
i=1

tr
©­«(

Sk∑
j=1

akj L
kj − Lki )T Ski (

Sk∑
j=1

akj L
kj − Lki )ª®¬+

λ1
2 fk

T
Sk∑
i=1

aki L
ki fk + δ (1 − eT ak), (12)

where e = [1, 1, · · · , 1]T ∈ RSk . We then take the derivative of
Eqn.(12) regarding aki , as follows,

Sk∑
j=1
(akj S

k − 1)tr
(
LkiSkiLkj

)
+
λ1
2 fk

T
Lki fk − δ . (13)

Se�ing it to zero and rearranging the terms, all aki ’s and δ can be
learned by solving the following linear system,

Mâk = u, (14)

where âk = [ak1 ,a
k
2 , · · · ,a

k
Sk
,δ ]T ∈ RSk+1, u = [u1,u2, · · · ,uSk , 1]T ∈

RS
k+1, and M ∈ R(Sk+1)×(Sk+1). Mi j and ui are de�ned as follows,

Mi j = Sk tr
(
LkiSkiLkj

)
, i, j , Sk + 1,

Mii = 0, i = Sk + 1,
Mi j = 1, otherwise,

ui =
Sk∑
j=1

tr
(
LkiSkiLkj

)
− λ1

2 f
kT Lki fk.

(15)

3.4.2 Computing f . By �xing L̂k’s and b, we take the derivative
of Eqn.(6) regarding fk and then reach the following linear system,

Wf̂ = t, (16)

which can be restated as,
W11 W12 . . . W1K
...

...
. . .

...

WK1 WK2 . . . WKK



f1
...

fK

 =

t1
...

tK

 , (17)

where W ∈ RKN×KN is a block matrix with K × K blocks; f̂ =
[f1T , f2T , · · · , fST ]T ∈ RKN and t = [t1T , t2T , · · · , tKT ]T ∈ RKN

are both block vectors with K blocks; Wkj and tk are de�ned as
follows, 

Wkk = λ1Lk + λ2b2kC, k = j,

Wkj = λ2bkbjC, otherwise,
tk = λ2bkCy.

(18)

As t can be treated as a constant vector as b is �xed,W is apparently
invertible. We thus can derive the closed-form solution of f̂ as,

f̂ =W−1t. (19)

Finally, f is updated based on the solved f̂ as,

f =
K∑
k=1

bk f
k. (20)
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Figure 2: A toy example to illustrate the impact of missing data. Lk and Lk
′
are the common Laplacian learned by the intra-

group fusion with and without selectors.

Table 1: Statistics of the collected multi-channel data.
Channels Sources #Universities #Items Duration
O�cial
Channel

MOE 743 96,551 13.06-15.06
Sina Weibo 721 10,912,234 15.01-16.05

Mass Media
Channel Baidu News 743 508,851 15.01-16.05

Academic
Channel

Microso�
Academic 456 1,211,102 11.01-16.03

Employment
Channel

LinkedIn 411 411 -
iPIN 722 722 -

General User
Channel Sina Weibo 573 2,025,777 15.01-16.05

3.4.3 Computing b. We �rst �x L̂k’s and fk’s, and then
substitute the constraint

∑K
k=1 bk = 1 into the objective function

with Lagrange multiplier δ and rewrite it without �xed part as,

min
b

λ2
2 (

K∑
k=1

bk f
k − y)TC(

K∑
k=1

bk f
k − y) + δ (1 − eT b), (21)

where e = [1, 1, · · · , 1]T ∈ RK . We then take the derivative of
Eqn.(21) regarding bk and obtain,

Mb̂ = u, (22)

where b̂ = [b1,b2, · · · ,bK ,δ ]T ∈ RK+1, u = [λ2f1
TCy, λ2f2

TCy, · · · ,
λ2fK

TCy, 1]T ∈ RK+1, and M ∈ R(K+1)×(K+1) with Mk j , as
follows, 

Mk j = λ2fk
T
Cf j, k, j , S + 1,

Mkk = 0, k = S + 1,
Mk j = 1, otherwise.

(23)

4 CHINESE UNIVERSITY RANKING
4.1 Data Collection
In this work, we take the Chinese university ranking as a case
study of social indicator computation. For each university, we �rst
collected Web data from �ve channels. �ey are the o�cial, mass
media, academic, employment, and general user channels. �e
statistics of the collected data are summarized in Table 1.

4.1.1 O�icial Channel. O�cial channel contains the primary
information of universities, such as student quality, o�cial
activities, and development plans, which plays a pivotal role in
inferring university quality. Data in o�cial channel are usually

released by government agencies and university themselves. �ey
includes: 1) MOE15. From the platform of MOE, we collected
university pro�les, such as location and category, and the
enrollment score of universities from 2013-201516. 2) Sina Weibo17.
Sina Weibo is one of the most popular SNSs in China. Most Chinese
universities publicize their o�cial activities and announcements
through their o�cial Sina Weibo accounts. We thus crawled the
historical posts from such accounts.

4.1.2 Mass Media Channel. It contains insights of mass media
which uncovers the hot topics, events, discoveries, and even
criticisms related to universities. News reports from mass media
are usually formalized by professional journalists with incisiveness
of arguments, and hence their opinions are objective. To take full
advantages of such opinions, we collected news reports mentioned
the universities of interest from Baidu News18.

4.1.3 Academic Channel. �is channel contains academic
records of universities showing their academic contributions and
in�uences. Such records are available from online bibliographic
databases. In this work, given a university, we collected papers
whose authors’ a�liation is the given university and papers’
citations from Microso� Academic.

4.1.4 Employment Channel. Employment channel contains
employment status of universities’ graduate students. �is is one
of the key factors related to university quality, because most of
students pursue higher education for be�er employment. �e
employment data are accessible through employment-oriented
SNSs and third party data analysis companies. �ey include: 1)
iPIN19. We collected employment data of the university’s graduate
students, including average salary, working location distribution,
and male-female ratio, from its homepage in iPIN, a data analysis
company in China. 2) LinkedIn. We collected People also viewed
information from universities’ homepage in LinkedIn to infer
employment similarity among universities.

15h�p://gaokao.chsi.com.cn/.
16In China, last year high school students �rst take part in the National College
Entrance Examination (NCEE). �ey then apply for universities based on their NCEE
scores. Regarding applications from students, the university selects students by their
scores from high to low. �e lowest score of the selected students is released as the
enrollment score of the university.
17h�p://weibo.com/.
18h�p://news.baidu.com/.
19h�p://www.ipin.com/.
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Table 2: Features extracted from the multi-channel data.
Channels Semi-structured Data Dimension Unstructured Data Dimension
O�cial
Channel

NCEE enrollment line, category, is 985, is 211, key subjects count, city,
fans count, followers count, posts count, comments count, likes count, etc. 78 topics 56

Mass Media
Channel monthly reports count 16 topics,

sentiment 95

Academic
Channel

papers count, �rst author papers count, cooperated papers count,
authors count, citations count, citations author, citations paper 13 - 0

Employment
Channel

average sallary, average sallary top5 subjects,
working city, male female ratio, similar universities 443 - 0

General User
Channel posts count, reposted count, likes count, comments count, 4 topics,

sentiment 81

4.1.5 General User Channel. It contains public impressions,
a�itudes, and sentiment polarities of universities shared in SNSs
posts, signaling the reputation of universities. We hence collected
posts mentioning the given university from Sina Weibo.

4.1.6 Historical Ranking Result. �e historical ranking result y
is estimated from three most popular Chinese university rankings:
CUAA, RCCSE, and CAMS (Wu Shulian). To generate a relatively
objective historical ranking list, we averagely fused ranking results
in 2015 of these three traditional rankings. It should be noted, in
the future, the historical ranking result can be obtained from our
previous release rather than the result of traditional rankings.

4.2 Feature Extraction
Regarding the collected multi-channel data, we extracted three
types of features to describe each university: 1) Sentiment features.
We noticed that data in mass media and general user channels
convey the a�itude and sentiment of users [26]. We thus utilized
the Chinese microblog sentiment analysis tool [22] to judge the
polarity of contents from the mass media and general user channels.
For each given input, this tool would generate a three dimension
distribution to denote its probability to be negative, neutral, and
positive. 2) Topic features. According to our observation, contents
in the o�cial, mass media, or general user channel about similar
universities are likely to express similar topics. For instance, reports
from mass media may have a higher probability to report the topics
of “research achievements” and “technologies” for top universities.
Inspired by this, we explored the topic distributions over o�cial,
mass media, and general user channel. In particular, we generated
topic distributions using Latent Dirichlet Allocation [6], which has
been widely used in topic modeling. 3) Statistic features. �ality
of universities are directly re�ected by the volume of statistics, for
instance, the average salary of graduate students, the number of
publications, and the NCEE enrollment scores. Together with the
sentiment and topic features, the statistical features are summarized
in Table 2.

5 EXPERIMENT
5.1 Experimental Settings

5.1.1 Entity-aware Ranking Smoothness. As our historical
ranking y is estimated from CUAA, RCCSE, and CAMS, the ranking
smoothness weight of the i-th univeristy Cii in Eqn.(6) is assigned

Table 3: Statistics of the ground truth.

Universities University Pairs
Label 1 Label 0 Label -1 All

640 178,342 48,448 178,342 405,132

as the ratio of ranking lists containing the i-th university among
CUAA, RCCSE, and CAMS.

5.1.2 Ground Truth. Establishing the ground truth for university
ranking from scratch by ourselves is extremely resource consuming
and not reliable. We thus turn to justify the 2016 university ranking
results by our model in a pair-wise fashion. In particular, although
the traditional university ranking results of CUAA, RCCSE, and
CAMS are time- and resource-consuming, they were generated
by experts with su�cient domain knowledge. �ey are hence
remarkably reasonable. We established the pair-wise ground truth
upon their 2016 results. Given a pair of universities < ui ,uj >, if all
CUAA, RCCSE, and CAMS rank ui as be�er or worse than uj , then
the pair is labeled as 1 or -1, respectively. Otherwise, it is labeled
as 0, meaning ui and uj are not distinguished. �e statistics of the
constructed ground truth are shown in Table 3.

5.1.3 Evaluation Metrics. �e performance of our model and
the baselines was measured by Cohen’s kappa coe�cient (κ) [30],
macro-averaged precision (Pre), macro-averaged recall (Rec), macro-
averaged F1 score (F1), andmicro-averaged F120 [5]. We also carried
out the signi�cance test and reported the p-values.

5.1.4 University Pair Tagging. Regarding the learned ranking
list f , the label of the i-th and j-th universities was set as,{

siдn(fi − fj ), if | fi − fj | > θ ,
0, otherwise.

(24)

θ was set as 0.004, as it outperformed the others in {0.001, 0.002, · · · ,
0.01} during our preliminary experiments.

5.1.5 Compared Methods. To show the e�ectiveness of our
scheme, we compared it with the following state-of-the-art
methods,
• Historical Ranking (HR): It takes the historical ranking list y

as current ranking, i.e., f = y.

20Regarding our ground truth, the micro-averaged Pre, Rec, and F1 are equal, we thus
only reported the F1.
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• NCEE Enrollment Scores (NES): It ranks universities with
higher average NCEE enrollment scores in the front.

• Early Fusion (EF): It �rst concatenates features of all channels,
constructs a simple graph as described in Section 3.1.1, and then
performs manifold ranking with the simple graph [21].

• Late Fusion (LF): It separately performs simple graph
construction and manifold ranking upon each channel, and then
averagely combines the generated ranking lists [8].

• Joint Learning (JL): JL constructs simple graph on each channel
and then learns a common ranking list by jointly regulating it
on simple graph Laplacian matrices of all channels [38].

• Subspace Learning (SL): It �rst maps multi-channel data to
subspaces with the same dimension by dictionary learning [4].
Based on the representations in subspaces, it then performs
ranking via JL.

It should be noted that EF, lF, JL, and SL also encourage the
�nal ranking results to be close to the initial ranking one.

5.2 Parameter Tuning and Sensitivity Analysis
In the proposed GMR, we have two implicit parameters and two
explicit parameters. �ey are the number of nearest neighbors
k in hypergraph construction, the number of clusters K , λ1 and
λ2. During the experiments, we heuristically set k as 5 based on
our observation on the data. �e optimal values of the remaining
parameters were carefully tuned on the development set. In
particular, in each round of the 5-fold cross-validation, we divided
our dataset into two parts: 80% of the universities pairs were used
for tuning, 20% were used for testing. We employed grid search to
select the optimal parameters with a small but adaptive step size.
�e search ranges for λ1, λ2, and K are [0.1, 100], [10, 10, 000], and
[1, 8]. �e parameters corresponding to the largest micro-averaged
F1 were used to report the �nal results. For other compared
methods, the procedures of parameter tuning are the same to ensure
fair comparison.

Take the tuning procedure of one round in the 5-fold cross
validation as an example, we observed that our model reached
the optimal performance when K = 3, λ1 = 9, λ2 = 500. Figure 3
illustrates the performance of our model with respect to these three
parameters. �is was accomplished by varying one and �xing the
others with optimal values.

5.3 Performance Comparison
�e comparison results between our proposed GMR and baselines
are summarized in Table 4. From this table, we have the following
observations: 1) NES and HR perform worse than the others.
�is tells us that the graph-based ranking methods successfully
leverage themulti-channelWeb data and hence improve the ranking
performance. 2) LF performs worse than the other multi-channel
ranking methods. �is is because it equally fuses channels instead
of distinguishing them with di�erent con�dences. 3) GMR shows
superior performance to the others. �is justi�es the importance of
integrating the block-wise data completion, cluster-wise ranking,
and ranking results fusion within a uni�ed model. 4) All the p-
values of the pairwise signi�cance t-test based on 5-fold evaluation
are greatly much than 0.05. �is demonstrates that the performance

improvements achieved by our model over the baselines are
statistically signi�cant.

5.4 Component-wise Comparison
We also carried out experiments to justify the e�ectiveness of
each component in the proposed GMR. In particular, we compared
the following methods by disabling some terms of our objective
function in Eqn.(6).
• GMR-HRC: We set C to an identity matrix to ignore the

historical ranking con�dence. GMR-MD: We set all Ski ’s to
identity matrices to ignore the missing data problem.

• GMR-DH: In this method, the semi-structured and unstructured
data from one channel are directly concatenated and used to
construct the simple graph.

• GMR-CC: It learns a common space from all channels and then
performs ranking on the common representations to ignore inter-
group fusion.
Table 5 displays the performance of the abovemethods. From this

table, we observed that: 1)GMR performs be�er than the remaining
methods. It con�rms the e�ectiveness of jointly considering of
the block-wise data completion, cluster-wise ranking, and ranking
results fusion. 2) GMR-HRC performs much worse than GMR.
It shows the importance of carefully se�ing entity-aware ranking
smoothness, and hence assigning identical ranking smoothness
to all the entities may lead to suboptimal performance. 3) It is
interesting to see that GMR-DH achieves be�er macro-averaged
Rec since it predicts more university pairs to be 0, a relatively rare
class. GMR fails to identify such pairs since the similarity between
entities in the pair is carved by their nearest neighbors. Although
sacri�cing such pairs, GMR successfully recalls more pairs in total,
and hence veri�es the robustness of hypergraph.

5.5 Channel Comparison
To measure the representation ability of each channel, we held
one channel out and fed the others into our GMR model. �e
experimental results are displayed in Table 6. We observed: 1) �e
performance of GMR decreases more when the o�cial channel is
not fed into. �is suggests that the o�cial channel provides more
informative and important cues for university ranking. 2) With
all channels fed into, GMR performs best, which indicates that
universities can be comprehensively described by more channels.
3) All the p-values of the pairwise signi�cance t-test are greatly
smaller than 0.05, which veri�es the signi�cance of performance
improvements.

5.6 Development Set Comparison
Parameter tuning of our GMR relies on the development set.
Towards the whole ranking list generation in 2016, it is arbitrary
to directly tune parameters with the ground truth. We thus
constructed a new development set (DS2015) from the ranking
results of CUAA, RCCSE, and CAMS in 2015 for whole ranking
list generation task. University pairs in DS2015 were labeled in
the same way as the ground truth. To uncover the e�ectiveness of
the constructed development set, we compared it with arbitrarily
tuning parameters based on ground truth (GT). Corresponding
performances are shown in Table 7. As can be seen, the performance
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Figure 3: Procedure of parameter tuning by varying one and �xing others. �e red dotted line marked the optimal settings.

Table 4: Performance comparison between our method and baselines.

Methods Macro Averaged Micro Averaged
κ p-value@κPre Rec F1 p-value@F1 F1 p-value@F1

NES 0.507±3e-7 0.576±4e-7 0.540±3e-7 8e-10 0.761±7e-1 4e-9 0.572±2e-6 3e-9
HR 0.776±4e-4 0.658±2e-7 0.618±2e-7 1e-9 0.868±3e-7 2e-7 0.764±1e-6 8e-8
EF 0.833±5e-6 0.786±4e-6 0.801±3e-6 1e-5 0.896±5e-7 2e-6 0.823±1e-6 2e-6
LF 0.844±6e-5 0.692±2e-6 0.684±6e-6 2e-8 0.878±7e-7 4e-7 0.784±2e-6 2e-7
JL 0.826±1e-5 0.789±6e-6 0.802±7e-6 2e-4 0.894±3e-6 1e-5 0.820±8e-6 1e-5
SL 0.822±1e-5 0.788±2e-6 0.800±4e-6 8e-5 0.893±2e-6 6e-6 0.818±6e-6 6e-6

GMR 0.841±1e-5 0.797±4e-6 0.812±4e-6 - 0.906±2e-6 - 0.840±4e-6 -

Table 5: Performance comparison among components in our GMR model.

Methods Macro Averaged Micro Averaged
κ p-value@κPre Rec F1 p-value@F1 F1 p-value@F1

GMR-HRC 0.838±9e-6 0.783±2e-6 0.800±2e-6 2e-6 0.898±8e-7 2e-6 0.825±2e-6 2e-6
GMR-MD 0.834±8e-6 0.794±5e-6 0.809±5e-6 8e-4 0.902±1e-6 3e-5 0.834±3e-6 3e-5
GMR-DH 0.833±3e-6 0.798±7e-6 0.811±5e-6 9e-2 0.903±8e-7 6e-4 0.835±2e-6 1e-3
GMR-CC 0.839±1e-5 0.786±2e-5 0.802±2e-5 5e-4 0.903±3e-6 4e-3 0.834±8e-6 3e-3
GMR 0.841±1e-5 0.797±4e-6 0.812±4e-6 - 0.906±2e-6 - 0.840±4e-6 -

Table 6: Performance comparison among channels with our GMR model. O�cial, Media, Academic, Employ, Crowd
respectively denote the o�cial, mass media, academic, employment, and general user channels.

Methods Macro Averaged Micro Averaged
κ p-value@κPre Rec F1 p-value@F1 F1 p-value@F1

No-O�cial 0.784±5e-6 0.807±7e-6 0.791±6e-6 7e-6 0.867±4e-6 9e-8 0.783±9e-6 1e-7
No-Media 0.810±2e-6 0.800±3e-6 0.805±2e-6 6e-5 0.893±6e-7 6e-7 0.820±2e-6 9e-7

No-Academic 0.828±1e-5 0.809±8e-6 0.817±9e-6 1e-3 0.902±3e-6 2e-4 0.835±9e-6 6e-4
No-Employ 0.831±9e-6 0.780±3e-6 0.795±4e-6 6e-5 0.900±1e-6 3e-4 0.829±3e-6 2e-4
No-Crowd 0.815±1e-5 0.812±8e-6 0.814±1e-5 8e-2 0.895±4e-6 1e-5 0.825±1e-5 3e-5

All 0.841±1e-5 0.797±4e-6 0.812±4e-6 - 0.906±2e-6 - 0.840±4e-6 -

of DS2015 is comparable to that of GT, which indicates that our
scheme is truly usable and works appropriately without the latest
ranking results of CUAA, RCCSE, and CAMS.

5.7 User Study
To further investigate the e�ectiveness of our scheme, we invited 17
volunteers21 to evaluate our generated ranking list and the ranking
results of RCCSM, CAMS, and CUAA in 2016. Each volunteer
was presented the top-30 of each ranking list and was required
to assign one of eleven scores (ranging from 0 to 10) according
to their subjective opinions. �ese scores represent the strength

21�e volunteers are graduate students, research fellows, and visiting professors in
di�erent majors of National University of Singapore, coming from mainland China.

of the volunteer’s agreement with the given ranking list. �e
volunteer would assign score s to a ranking list, if the number
of universities whose ranks are consensus with the expectations
of the volunteer belongs to the range (3(s − 1), 3s]. For instance, if
the volunteer thinks that 20 of the top-30 universities are ranked as
exepected, then he/she will assign 7 to the given ranking list. �e
user study results are summarized in Table 8. As can be seen, our
ranking achieves higher average score than traditional rankings.
Besides, over half of the volunteers assign highest score to our
result among all the given rankings. It shows that our ranking
results are comparable to those traditional rankings and further
veri�es the usability of our scheme.
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Table 7: Performance comparison between development
sets towards the whole ranking list generation.

Methods Macro Averaged Micro Ave.
κPre Rec F1 F1

GT 0.841 0.797 0.812 0.906 0.840
DS2015 0.841 0.793 0.809 0.905 0.837

Table 8: Performance comparison among our ranking and
traditional Chinese university rankings.

Ranking Results Ours RCCSE CAMS CUAA
Average Scores 8.12±0.99 7.59±1.51 7.71±1.35 8.06±0.81

Highest Score Percentage 53% 18% 35% 59%

6 CONCLUSION AND FUTUREWORK
�is paper presented a novel and automatic scheme for social
indicator computation by exploring multi-channel Web data. �is
scheme integrates the block-wise data completion, cluster-wise
ranking, and ranking results fusion within a uni�ed model. �e
scheme is successfully applied to Chinese university ranking, a case
study of social indicator. We observed that: 1) the o�cial channel
dominates the university ranking performance; and 2) the generated
ranking results are comparable to the traditional Chinese university
rankings, which demonstrates the e�ectiveness and rationality of
our scheme.

In future, we plan to apply our scheme to other social indicator
applications and consider the complementary relatedness among
channels instead of simple correlations.
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