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ABSTRACT
Recently, the booming fashion sector and its huge potential benefits
have attracted tremendous attention from many research commu-
nities. In particular, increasing research efforts have been dedicated
to the complementary clothing matching as matching clothes to
make a suitable outfit has become a daily headache for many
people, especially those who do not have the sense of aesthetics.
Thanks to the remarkable success of neural networks in various
applications such as the image classification and speech recognition,
the researchers are enabled to adopt the data-driven learning
methods to analyze fashion items. Nevertheless, existing studies
overlook the rich valuable knowledge (rules) accumulated in fashion
domain, especially the rules regarding clothing matching. Towards
this end, in this work, we shed light on the complementary clothing
matching by integrating the advanced deep neural networks and
the rich fashion domain knowledge. Considering that the rules can
be fuzzy and different rules may have different confidence levels
to different samples, we present a neural compatibility modeling
scheme with attentive knowledge distillation based on the teacher-
student network scheme. Extensive experiments on the real-world
dataset show the superiority of our model over several state-of-
the-art methods. Based upon the comparisons, we observe certain
fashion insights that can add value to the fashion matching study.
As a byproduct, we released the codes, and involved parameters to
benefit other researchers.
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(a) Composition1. (b) Composition2. (c) Composition3.

Figure 1: Examples of outfit compositions.
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1 INTRODUCTION
According to the Goldman Sachs, the 2016 online retail market
of China for fashion products, including apparel, footwear, and
accessories, has reached 187.5 billion US dollars1, which demon-
strates people’s great demand for clothing. In fact, clothing plays a
pivotal role in people’s daily life, as a proper outfit (e.g., a top with a
bottom) can empower one’s favorable impression. In a sense, how to
make suitable outfits has become the daily headache ofmany people,
especially those who do not have a good sense of clothing matching.
Fortunately, recent years have witnessed the proliferation of many
online fashion communities, such as Polyvore2 and Chictopia3,
where a great number of outfits composed by fashion experts
have been made publicly available, as shown in Figure 1. Based on
such rich real-world data, several researchers have attempted to
intelligently aid people in clothing matching.

In fact, most existing researches mainly rely on the deep
neural networks to extract the effective representations for fashion
items to tackle the clothing matching problem, due to their
impressive advances in various research domains, including the
image classification, speech recognition and machine translation.
However, as pure data-driven methods, neural networks not only
suffer from the poor interpretability but also overlook the value
of human knowledge. Especially, as an essential aspect of people’s
daily life, clothing matching domain has accumulated various
valuable knowledge, i.e., the matching rules. Although they may
be of high subjectivity, certain matching rules have been widely
accepted by the public as common sense. For example, tank tops

1http://www.chinainternetwatch.com/19945/online-retail-2020.
2http://www.polyvore.com/.
3http://www.chictopia.com/.
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(a) Example1. (b) Example2.

Figure 2: Illustration of the rule confidence on different item
pairs. Both examples satisfy the rule “stripe tops can gowith
stripe bottoms”.

would go better with shorts instead of the dress, while silk tops
better avoid the knit bottoms. Therefore, it is highly desired to
devise an effective model to seamlessly incorporate such domain
knowledge into the pure data-driven learning methods and hence
boost the matching performance.

In this work, we aim to investigate the practical fashion prob-
lem of clothing matching by leveraging both the deep neural
networks and the rich human knowledge in fashion domain. In
fact, the problem we pose here can be cast as the compatibility
modeling between the complementary fashion items, such as tops
and bottoms. However, comprehensively model the compatibility
between fashion items from both the data-driven and knowledge-
driven perspectives is non-trivial due to the following challenges.
1) The human knowledge pertaining to fashion is usually implicitly
conveyed by the compositions of fashion experts, which makes
the domain knowledge unstructured and fuzzy. Therefore, how
to construct a set of structured knowledge rules for the clothing
matching constitutes a tough challenge. 2) How to seamlessly
encode such knowledge rules into the pure data-driven learning
framework and enable the model to learn from not only the specific
data but also the general rules poses another challenge for us. And
3) for different samples, knowledge rules may present different
levels of confidence and hence provide different levels of guidance.
For example, as can be seen from Figure 2, both compositions satisfy
the rule “stripe tops can go with stripe bottoms” according to their
contextual metadata. However, obviously, the given rule should
impose more regularization towards the example of Figure 2(a) and
deserve higher rule confidence as compared to that of Figure 2(b).
Accordingly, how to effectively assign the rule confidence is a
crucial challenge.

To address the aforementioned challenges, we present a com-
patibility modeling scheme with attentive knowledge distillation,
dubbed as AKD-DBPR, as shown in Figure 3, which is able to
learn from both the specific data samples and the general domain
knowledge. In particular, we adopt the teacher-student scheme [18]
to incorporate the domain knowledge (as a teacher) and enhance
the performance of neural networks (as a student). As a pure
data-driven learning, the student network aims to learn a latent
compatibility space to unify the fashion items from heterogenous
spaces with dual-path neural networks. To comprehensively model
the compatibility and the semantic relation between different
modalities, the student network seamlessly integrates the visual
and contextual modalities of fashion items by imposing hidden
layers over the concatenated vectors of visual and contextual

representations. Moreover, to better characterize the relative com-
patibility between fashion items, we investigate the pairwise
preference between complementary fashion items by building our
student network based on the Bayesian Personalized Ranking (BPR)
framework [33]. Meanwhile, we encode the domain knowledgewith
a set of flexible structured logic rules and encode these knowledge
rules into the teacher network with regularizers, whereby we
introduce the attention mechanism to attentively assign the rule
confidence. Ultimately, the student network is encouraged to not
only achieve good performance of the compatibility modeling but
also emulate the rule-regularized teacher network well.

Our main contributions can be summarized in threefold:
• We present an attentive knowledge distillation scheme, which
is able to encode the fashion domain knowledge to the
traditional neural networks. To the best of our knowledge,
this is the first to incorporate fashion domain knowledge to
boost the compatibility modeling performance in the context
of clothing matching.

• Considering that different knowledge rules may have different
confidence levels in the knowledge distillation procedure, we
introduce the attention mechanism to the proposed scheme to
flexibly assign the rule confidence.

• Extensive experiments conducted on the real-world dataset
demonstrate the superiority of the proposed scheme over the
state-of-the-art methods. As a byproduct, we released the
codes, and involved parameters to benefit other researchers4.

The remainder of this paper is structured as follows. Section
2 briefly reviews the related work. The proposed AKD-DBPR is
introduced in Section 3. Section 4 presents the experimental results
and analyses, followed by our concluding remarks and future work
in Section 5.

2 RELATEDWORK
2.1 Fashion Analyses
Recently, the huge amount of potential benefits of fashion industry
have attracted many researchers’ attention from the computer
vision to the multimedia research communities. Existing efforts
mainly focus on clothing retrieval [16, 26, 27], fashionability
prediction [24] and compatibility modeling [11, 36]. For example,
Liu et al. [26] presented a latent Support Vector Machine [9]
model for both occasion-oriented outfit and item recommendation
based on a dataset of wild street photos, constructed by manual
annotations. Due to the infeasibility of human annotated dataset,
several pioneering researchers have resorted to other sources,
where real-world data can be harvested automatically. For example,
Hu et al. [17] investigated the problem of personalized outfit
recommendation with a dataset collected from Polyvore. McAuley
et al. [29] proposed a general framework to model the human
visual preference for a given pair of objects based on the Amazon
real-world co-purchase dataset. In particular, they extracted visual
featureswith convolutional neural networks (CNNs) and introduced
a similarity metric to model the human notion of complement
objects. Similarly, He et al. [12] introduced a scalable matrix
factorization approach that incorporates visual features of product

4http://akd_dbpr.bitcron.com/.
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Figure 3: Illustration of the proposed scheme. The student network, consisting of dual-path neural networks, aims to
learn the latent compatibility space where the implicit preference among items can be modeled via Bayesian Personalized
Ranking (BPR). The teacher network encodes the domain knowledge and guides the student network via attentive knowledge
distillation (AKD). ti : top, bj : bottom, “≻”: pair-wise preference. “->” denotes the category hierarchy. The width of the arrows
originated from rules refers to the rule confidence.

images to fulfil the recommendation task. Although existing efforts
have achieved compelling success, previous researches on fashion
analysis mainly focus on the visual input but fail to consider the
contextual information. Towards this end, several efforts have
been dedicated to investigate the importance of the contextual
information [24, 36] in fashion analysis. Overall, existing studies
mainly focus on modeling the compatibility purely based on the
data-driven deep learning methods but overlook the value of
domain knowledge. Distinguished from these researches, we aim to
explore the potential of the fashion domain knowledge to guide the
pure data-driven neural networks and improve the interpretability
as a side product.

2.2 Knowledge Distillation
Although deep neural networks have harvested huge success in
a variety of application domains ranging from natural language
processing to computer vision [6, 36, 42], several researchers still
have certain concerns with the poor interpretability as pure data-
driven models. Towards this end, one mainstream research is to
take advantage of the additional knowledge as a guidance to train
the traditional neural networks. Hinton et al. [15] first introduced a
knowledge distillation framework to transfer the knowledge from
a large cumbersome model to a small model. Inspired by this, Hu et
al. [18] introduced an iterative teacher-student distillation approach,
which combines neural networks with several first-order logic
rules representing structured knowledge in the domain of natural
language processing. Later, Yu et al. [43] proposed to utilize the
knowledge of linguistic statistics to regularize the learning process
in the context of visual relationship detection. Although knowledge
distillation in deep neural networks has been successfully applied
to solve the visual relationship detection [43], sentence sentiment
analysis and name entity recognition [32], limited efforts have been

dedicated to the fashion domain, which is the research gap we aim
to bridge in this work.

3 NEURAL COMPATIBILITY MODELING
3.1 Notation
Formally, we first declare some notations.We use bold capital letters
(e.g., X) and bold lowercase letters (e.g., x) to denote matrices and
vectors, respectively. We employ the non-bold letters (e.g., x) to
represent scalars and Greek letters (e.g., β) to denote the parameters.
If not clarified, all vectors are in the column forms.

A
F denotes

the Frobenius norm of matrix A.

3.2 Problem Formulation
In a sense, people prefer to match compatible clothes to make a
harmonious outfit. Accordingly, in this work, we aim to tackle the
essential problem of compatibility modeling for clothing matching.
Suppose we have a set of tops T = {t1, t2, · · · , tNt } and bottoms
B = {b1,b2, · · · ,bNb }, where Nt and Nb denote the total numbers
of tops and bottoms, respectively. For each ti (bi ), we use vti (v

b
i )

∈ RDv and cti (cbi ) ∈ R
Dc to represent its visual and contextual

embeddings, respectively. Dv and Dc denote the dimensions of the
corresponding embeddings. In addition, we have a set of positive
top-bottom pairs S = {(ti1 ,bj1 ), (ti2 ,bj2 ), · · · , (tiN ,bjN )} derived
from the set of outfits composed by fashion experts on Polyvore,
where N is the total number of positive pairs. Accordingly, for
each top ti , we can derive a set of positive bottoms B+

i = {bj ∈

B|(ti ,bj ) ∈ S}. Meanwhile, we have a set of rules R = {Rl }
L
l=1

pertaining to clothing matching, where Rl is the l-th rule and L
is the total number of rules. We employ R+ and R− denote the
set of positive and negative rules, respectively. Letmi j denote the
compatibility between top ti and bottom bj , and on top of that
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we can generate a ranking list of bottoms bj ’s for a given top ti
and hence solve the practical problem of clothing matching. To
accurately measuremi j , we focus on devising a neural compatibility
modeling scheme, which is able to jointly learn from both the
specific data samples and general knowledge rules.

3.3 Data-driven Compatibility Modeling
Apparently, it is not advisable to directly measure the compatibility
between complementary fashion items from the original distinct
spaces due to their heterogeneity. Similar to [36], we assume that
there is a latent compatibility space that can bridge the gap between
the fashion items from the heterogenous spaces. In such latent
space, compatible complementary fashion items are enabled to
share high similarity. Considering that the factors contributing
to the compatibility between fashion items may diversely range
from style and color, to material and shape, and their relations can
be rather sophisticated, we assume that the compatibility space
is highly non-linear. In particular, we adopt the pure data-driven
neural network to explore the latent compatibility space, due to its
recent compelling success in various machine learning applications.

In fact, each fashion item can be associated with multiple
modalities, such as visual and contextual, and different modalities
complementarily characterize the same fashion item. In particular,
the visual modality can intuitively reflect the color and shape of the
fashion items, while the contextual modality can briefly summarize
the category and material information. To seamlessly exploit the
potential of both modalities in the compatibility modeling, we
employ the multi-layer perceptron (MLP) to model the semantic
relation between different modalities of the same fashion items. In
particular, we add K hidden layers over the concatenated vectors
of visual and contextual representations as follows,

zxi0 =
[
vxi
cxi

]
,

zxi1 = s(Wx
1 zxi0 + bx1 ),

zxik = s(Wx
k zxi (k−1) + bxk ), k = 2, · · · ,K ,x = {t ,b},

(1)

where zxik denotes the hidden representation, Wx
k and bxk , k =

1, · · · ,K , are weight matrices and biases, respectively. The super-
scripts t and b refer to top and bottom. s : R 7→ R is a non-linear
function applied element wise5. We treat the output of the K-
th layer as the latent representations for tops and bottoms, i.e.,
z̃xi = zxiK ∈ RDl ,x = {t ,b}, where Dl denotes the dimensionality
of the latent compatibility space. Accordingly, we can measure the
compatibility between top ti and bottom bj as follows,

mi j = (z̃ti )T z̃bj . (2)

In a sense, we can easily derive the positive (compatible) top-
bottom pairs from those have been composed together by fashion
experts. However, pertaining to the non-composed fashion item
pairs, we cannot draw the conclusion that they are incompatible as
they can also be the missing potential positive pairs (i.e., pairs can
be composed in the future). Towards this end, to accurately model
the implicit relations between the tops and bottoms, we naturally
adopt the BPR framework, which has proven to be effective in the
implicit preference modeling [4, 14]. In particular, we assume that
5In this work, we use the sigmoid function s (x ) = 1/(1 + e−x ).

bottoms from the positive set B+
i are more compatible to top ti

than those non-composed neutral bottoms. Accordingly, we build
the following training set:

DS := {(i, j,k)|ti ∈ T ,bj ∈ B+
i ∧ bk ∈ B\B+

i }, (3)

where the triplet (i, j,k) indicates that bottom bj is more compatible
with top ti compared to bottom bk .

Then according to [33], we have the objective function,

Lbpr =
∑

(i, j,k )∈DS

Lbpr (mi j ,mik )

=
∑

(i, j,k )∈DS

−ln(σ (mi j −mik )) +
λ

2
Θ2

F , (4)

where λ is the non-negative hyperparameter, the last term is
designed to avoid overfitting and Θ refers to the set of parameters
(i.e., Wx

k and bxk ) of neural networks.

3.4 Attentive Knowledge Distillation
As an important aspect of people’s daily life, clothing matching
has gradually accumulated much valuable human knowledge. For
example, it is favorable that a coat goes better with a dress than
with a short pants, while a silk top can hardly go with a knit bottom.
In order to fully leverage the valuable domain knowledge, we utilize
the knowledge distillation technique to guide the neural networks
and allow the model to learn from general rules [18]. In particular,
we adopt the teacher-student scheme, whose underlying intuition
is analogous to the human education, where the teacher is aware of
several professional rules and he/she thus can instruct students with
his/her solutions to particular questions. In this work, considering
the flexibility of logic rules [10] as a declarative language, we use
logic rules to represent the fashion domain knowledge. We encode
these rules via regularization terms into a teacher network q, which
can be further employed to guide the training of the student network
p of interest (i.e., the aforementioned data-driven neural network
designed for compatibility modeling). Ultimately, we aim to achieve
a good balance between the superior prediction performance of
student network p and the mimic capability of student network p to
teacher network q. Accordingly, we have the objective formulation
at iteration t as,

Θ(t+1) = arg min
Θ

∑
(i, j,k )∈DS

{
(1 − ρ)Lbpr (mp

i j ,m
p
ik )

+ ρLcrs

(
q(t )(i, j,k), p(i, j,k)

)}
+
λ

2
Θ2

F , (5)

where Lcrs stands for the cross-entropy loss, p(i, j,k) and q(i, j,k)
refer to the sum-normalized distribution over the compatibility
scores predicted by the student network p and teacher network q,
(i.e., [mp

i j ,m
p
ik ] and [mq

i j ,m
q
ik ]), respectively. ρ is the imitation pa-

rameter calibrating the relative importance of these two objectives.

3.5 Teacher Network Construction
As the teacher network plays a pivotal role in the knowledge
distillation process, we now proceed to introduce the derivation of
the teacher network q. On the one hand, we expect that the student
network p can learn well from the teacher network q and such
property can be naturally measured by the closeness between the
compatibility prediction of both networks p and q. On the other
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Figure 4: Workflow of the proposed attentive knowledge
distillation framework.

hand, we attempt to utilize the rule regularizer to encode the general
domain knowledge. In particular, we adapt the teacher network
construction method proposed in [18, 19] as follows,

min
q
KL(q(i, j,k) ∥ p(i, j,k)) −C

∑
l
Eq[fl (i, j,k)], (6)

where C is the balance regularization parameter and KL measures
the KL-divergence between p(i, j,k) and q(i, j,k). This formulation
has proven to be a convex problem and can be optimized with the
following closed-form solutions,

q∗(i, j,k) ∝ p(i, j,k)exp
{∑

l
Cλl fl (i, j,k)

}
, (7)

where λl stands for the confidence of the l-th rule and the larger
λl indicates the stronger rule constraint. fl (i, j,k) is the l-th rule
constraint function devised to reward the predictions of the student
network that meet the rules while penalize the others. In our work,
given the sample (i, j,k), we expect to reward the compatibilitymi j ,
if (i, j) satisfies the positive rule but (i,k) not or (i,k) triggers the
negative rule while (i, j) not. In particular, we define f

i j
l (i, j,k), the

element of fl (i, j,k) calibratingmi j , as follows,

f
i j
l (i, j,k) =


1, if

{
δl (ij) = 1,δl (ik) = 0, l ∈ R+,

δl (ij) = 0,δl (ik) = 1, l ∈ R−,

0, others,
(8)

where δl (ab) = 1(0) means that the sample (a,b) satisfies the l-th
rule (or not). We define the other element f ikl (i, j,k) of fl (i, j,k)
correspondingmik in the same manner.

Traditionally, λl in Eqn.(7) can be either manually assigned or
automatically learnt from the data, and both ways assume the rules
have universal confidence to all samples. However, in fact, different
rules may have different confidence levels for different samples,
which can be attributed to the fact that the human knowledge rules
can be general and fuzzy. It is intractable to directly pre-define the
universal rule confidence. Therefore, considering that different rules
can flexibly contribute to the guidance to the given samples, we

Algorithm 1 Attentive Knowledge Distillation.
Input: DS = {(i, j,k)}, R = {(Rl )}Ll=1, ρ, C
Output: Parameters Θ in the student network p, parameters Φ

in the attention network a.
1: Initialize neural network parameters Θ and Φ.
2: repeat
3: Draw (i, j,k) from DS
4: for each l in R(i, j,k) do
5: Compute λl (i, j,k) according to Eqns. (9) and (10).
6: end for
7: Construct teacher network q according to Eqn. (7).
8: Transfer knowledge into p by updating Θ and Φ according

to Eqn. (5).
9: until Converge

adopt the attention mechanism [1], which has proven to be effective
in many machine learning tasks such as the recommendation [3,
6, 39] and representation learning [31]. The key to the success of
attention mechanism lies in the observation that human tends to
selectively attend to parts of the input signal rather than the entirety
at once during the process of human recognition. In our work,
we adopt the soft attention model to assign the rule confidence
adaptively according to the given samples. In particular, for a given
sample (i, j,k) and the set of rules it activates R(i, j,k), we assign
λl (i, j,k) as follows,

λ
′

l (i, j,k) =wTϕ(Wt [ṽi , c̃i ] + Wb [ṽj , c̃j ] + Wb [ṽk , c̃k ]
+ Wl rl + b) + c, l ∈ R(i, j,k), (9)

where the Wt ∈ Rh×(Dv+Dt ), Wb ∈ Rh×(Dv+Dt ), Wl ∈ Rh×L ,
w ∈ Rh , b ∈ Rh and c are the model parameters. h represents the
hidden layer size of the attention network. rl ∈ RL stands for the
one-hot encoding of the l-th rule. The attention scores are then
normalized as follows,

λl (i, j,k) =
exp(λ

′

l (i, j,k))∑
u ∈R(i, j,k ) exp(λ′

u (i, j,k))
. (10)

Figure 4 illustrates the workflow of our model, while the opti-
mization procedure of our framework is summarized in Algorithm 1.
Notably, the teacher network is first constructed from the student
network at the very beginning of the training, whichmay induce the
poor guidance at first. Therefore, we expect the whole framework
favors to the prediction of the ground truth more at the initial stage
but gradually bias towards the imitate capability of the student
network to the teacher network. Therefore, we adopt the parameter
assigning strategy in [18] to assign ρ dynamically, which keeps ρ
increasing as the training process goes.

3.6 Rules Construction
In this work, we aim to leverage the explicit structured domain
knowledge to guide the student neural network and hence boost the
performance. To derive the domain knowledge, we first exploit our
internal training dataset, which contains rich positive top-bottom
pairs. In general, the compatibility between fashion items mainly
affected by five attributes: color, material, pattern, category and
brand.We hence define a dictionary with the possible values of each
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Table 1: Value examples of each attribute.

Attributes Value Examples
Color black, white, green, red, blue, grey

Material knit, silk, leather, cotton, fur, cashmere
Pattern pure, grid, dot, floral, number (letter)
Category coat, dress, skirt, sweater, jeans, hoodie
Brand Yoins, HM, Topshop, Gucci

attribute based on the training dataset while taking the annotation
details in [28] as a reference. Due to the limited space, Table 1 shows
several value examples of each attribute6. We then calculate the
co-occurrence of the value pairs for each attribute and retain both
the top 10 and the last 10 pairs as the rule candidates, as we assume
that the high co-occurrence can indicate the high compatibility and
facilitate the screen of positive rules, e.g., “black top goes better with
a black bottom”, while the low co-occurrence may contribute to
the derivation of the negative rules, such as “blouse cannot go with
the dress”. The underlying philosophy behind is that sometimes it
is intractable to identify compatible fashion items but effortless to
determine the incompatible ones. Thereafter, to ensure the quality
of these rules extracted from the limited dataset, we further ask
three fashion-lovers to manually screen the rules. Finally, we obtain
15 rules, which we will discuss in detail in the following section.

For simplicity, we use “value1 + value2” to denote the positive
rule, while “no value1 + value2” representing the negative rule. For
example, “black + black” stands for the positive rule “black tops
can go with black bottoms”, and “no silk + knit” represents the
negative rule “silk tops cannot go with knit bottoms”. According
to Eqn.(8), our model needs to determine whether the pair of ti
and bj activates the given rule. We hence argue that (ti ,bj ) satisfies
the (positive/negative) rule, if the value1 and value2 of the rule
respectively appear in the contextual metadata of ti and bj .

4 EXPERIMENT
To evaluate the proposed method, we conducted extensive exper-
iments on the real-world dataset FashionVC by answering the
following research questions:

• Does AKD-DBPR outperform the state-of-the-art methods?
• How do the attention mechanisms affect the performance?
• How do AKD-DBPR perform in the application of the comple-
mentary fashion item retrieval?

In this section, we first introduce the experimental setting and then
provide the experimental results as well as discussion on each above
research question.

4.1 Experimental Settings
Dataset. In this work, we adopted the publicly released dataset
FashionVC [36] to evaluate our proposed model. FashionVC
consists of 20, 726 outfits with 14, 871 tops and 13, 663 bottoms,
composed by the fashion experts on Polyvore. Each fashion item in
FashionVC is associated with a visual image, relevant categories
and the title description.

6The complete list can be accessed via http://akd_dbpr.bitcron.com/.

(a) (b)

Figure 5: Training loss and the AUC curves.

Contextual Representation. In this work, contextual descrip-
tion of each fashion item refers to its title and category labels in dif-
ferent granularity. To obtain the effective contextual representation,
instead of the traditional linguistic features [37, 38], we adopted the
CNN architecture [23], which has achieved compelling performance
in various natural language processing tasks [35]. In particular, we
first represented each contextual description as a concatenated
word vector, where each row represents one constituent word and
each word is represented by the publicly available 300-D word2vec
vector. We then deployed the single channel CNN, consisting of a
convolutional layer on top of the concatenated word vectors and a
max pooling layer. In particular, we have four kernels with sizes of
2, 3, 4, and 5, 100 feature maps for each and the rectified linear unit
(ReLU) as the activation function. Ultimately, we obtained a 400-D
contextual representation for each item.

Visual Representation. Regarding the visual modality, we
applied the deep CNNs, which has proven to be the state-of-the-
art model for image representation learning [5, 22, 25, 29]. In
particular, we chose the pre-trained ImageNet deep neural network
provided by the Caffe software package [20], which consists of 5
convolutional layers followed by 3 fully-connected layers. We fed
the image of each fashion item to the CNNs, and adopted the fc7
layer output as the visual representation. Thereby, we represented
the visual modality of each item with a 4096-D vector.

We divided the positive pair set S into three chunks: 80% of
triplets for training, 10% for validation, and 10% for testing, denoted
as Strain , Svalid and Stest , respectively. We then generated the
tripletsDStrain ,DSvalid andDStest according to Eqn.(3). For each
positive pair of ti and bj , we randomly sampledM bottoms bk ’s and
each bk contributes to a triplet (i, j,k), where bk /∈ B+

i andM is set
as 3. We adopted the area under the ROC curve (AUC) [34, 40, 45] as
the evaluation metric. For optimization, we employed the stochastic
gradient descent (SGD) [2] with the momentum factor as 0.9. We

Table 2: Performance comparison among different ap-
proaches in terms of AUC.

Approaches AUC
POP 0.4206
RAND 0.5094
IBR 0.6075
ExIBR 0.7033
BPR-DAE 0.7616
DBPR 0.7704
AKD-DBPR-p 0.7843
AKD-DBPR-q 0.7852
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Figure 6: Comparison between AKD-DBPR and DBPR on testing triplets. All the triplets satisfy that ti : bj ≻ bk . We only list
the keywords of the metadata of items and highlight the values of the rule.

adopted the grid search strategy to determine the optimal values
for the regularization parameters (i.e., λ,C) among the values
{10r |r ∈ {−4, · · · ,−1}} and [2, 4, 6, 8], respectively. In addition,
the mini-batch size, the number of hidden units and learning
rate were searched in [32, 64, 128, 256], [128, 256, 512, 1024], and
[0.01, 0.05, 0.1], respectively. The proposed model was fine-tuned
for 40 epochs, and the performance on the testing set was reported.
We empirically found that the proposed model achieves the optimal
performance with K = 1 hidden layer of 1024 hidden units.

We first experimentally verified the convergence of the proposed
learning scheme. Figure 5 shows the changes of the objective
function in Eqn.(5) and the training AUC with one iteration of
our algorithm. As we can see, both values first change rapidly in
a few epochs and then go steady finally, which well demonstrates
the convergence of our model.

4.2 On Model Comparison (RQ1)
Due to the sparsity of our dataset, where matrix factorization based
methods [7, 8, 30] are not applicable, we chose the following content-
based baselines regarding compatibility modeling to evaluate the
proposed model AKD-DBPR.

• POP: We used the “popularity” of bottom bj to measure its
compatibility with top ti . Here the “popularity” is defined as
the number of tops that has been paired with bj in the training
set.

• RAND: We randomly assigned the compatibility scores ofmi j
andmik between items.

• IBR: We chose the image-based recommendation method
proposed by [29], which aims to model the compatibility
between objects based on their visual appearance. This method
learns a latent style space, where the retrieval of related
objects can be performed by traditional nearest-neighbor
search. Different from our model, this baseline learns the latent
space by simple linear transformation and only consider the
visual information of fashion items.

• ExIBR: We adopted the extension of IBR in [36], which is able
to handle both the visual and contextual data of fashion items.

• BPR-DAE: We selected the content-based neural scheme
introduced by [36], which is capable of jointly modeling the
coherent relation between different modalities of fashion items
and the implicit preference among items via a dual autoencoder
network.

• DBPR: To get a better understanding of our model, we
introduced the baseline DBPR, which is the derivation of our
model by removing the guidance of the teacher network and
solely relies on the student network.

Since we can choose either the distilled student network p or
the teacher network q with a final projection according to Eqn.(7)
for the testing, we introduced two derivations of our model: AKD-
DBPR-p and AKD-DBPR-q. Herep (q) means to use the final student
(teacher) network to calculate the compatibility between items.

Table 2 shows the performance comparison among different
approaches. From this table, we have the following observations: 1)

Table 3: Effects of the rule guidance. The first row refers to
the performance of the baseline DBPR.

Id Top Bottom AUC-p AUC-q
0 - - 0.7704 -
1 stripe stripe 0.7738 0.7738
2 floral floral 0.7744 0.7739
3 white black 0.7714 0.7714
4 black black 0.7755 0.7770
5 cashmere leather 0.7770 0.7773
6 Yoins Yoins 0.7792 0.7790
7 tank tops shorts 0.7732 0.7725
8 sweatshirt activewear pants 0.7757 0.7777
9 coat dress 0.7794 0.7792
10 no silk knit 0.7739 0.7739
11 no silk chiffon 0.7744 0.7744
12 no coat shorts 0.7760 0.7755
13 no jacket shorts 0.7779 0.7779
14 no blouses dress 0.7814 0.7814
15 no T-shirt dress 0.7810 0.7815
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Table 4: Effects of the attention mechanism.

Approaches Text Visual All
AKD-DBPR-q 0.7374 0.7302 0.7852
AKD-DBPR-p 0.7345 0.6961 0.7843
UKD-DBPR-q 0.7245 0.7280 0.7760
UKD-DBPR-p 0.7275 0.6865 0.7785
DBPR 0.7181 0.6826 0.7704

DBPR outperforms all the other state-of-the-art pure data-driven
baselines, which indicates the superiority of the proposed content-
based neural networks for compatibility modeling. 2) AKD-DBPR-p
andAKD-DBPR-q both surpass DBPR, which validates the benefit of
knowledge distillation in the context of compatibility modeling. To
intuitively understand the impact of the rule guidance, we illustrate
the comparison between AKD-DBPR and DBPR on several testing
triplets in Figure 6. As we can see, AKD-DBPR performs especially
better in cases when the given two bottoms bj and bk both seem
to be visually compatible to the top ti . Nevertheless, the general
knowledge rules may also lead to the failed triplets, which could
be explained by the fact that not all knowledge rules in fashion
domain can be universally applicable to all the fashion item pairs.

Moreover, to get a deep understanding of the rule guidance, we
further conducted experiments on each rule. Table 3 exhibits the
performance of the student network and teacher network with
different rules. Notably, we found that the negative rules (e.g., “no
T-shirt + dress”) seem to achieve better performance as compared
to the positive ones (e.g., “coat + dress”). One possible explanation
is that people are more likely to distinguish the incompatible pairs
than the compatible ones. In addition, as we can see, rules regarding
category show superiority over rules pertaining to other attributes,
such as material and color. This may be due to two reasons: 1)
The category related rules are more specific and acceptable by the
public, and hence have strong rule confidences and provide better
guidance to the neural networks. 2) The category metadata is better
structured, cleaner and more complete as compared to the loose
and noisy title description, where we derived the other attributes
(e.g., material and color) for fashion items. Moreover, as to the color
related rules, we found that the rule “black + black” surprisingly
outperforms the rule “white + black”. One plausible explanation
is that white tops are more versatile than black ones, suit more
bottoms with different colors, and hence deteriorate the confidence
of the rule “white + black”. Last but not least, interestingly, we
noted that the rule pertaining to the brand (i.e., Yoins) of fashion
items can achieve remarkable performance. This may be due to that
items of the same brand can share the brand exclusive features and
hence are more likely to make suitable outfits.

4.3 On Attention Mechanism (RQ2)
To evaluate the importance of the attention mechanism in the
knowledge distillation, we further compared AKD-DBPR with
its derivation UKD-DBPR, where the rule confidence is assigned
uniformly. Moreover, to obtain a thorough understanding, we
conducted the comparative experiments with different modality
configurations. Table 4 shows the effects of the attentionmechanism
in our model with different modality combinations. First, as can be
seen, our model consistently shows superiority over UKD-DBPR

Figure 7: Illustration of attentive rule confidences.

across different modality configurations, which enables us to safely
draw the conclusion that it is advisable to assign rule confidence
attentively rather than uniformly. Second, we observed that AKD-
DBPR remarkably outperforms DBPR with only the visual modality
(the relative improvement reaches 6.97%). This may be due to the
fact that in this context, AKD-DBPR is able to take advantage
of the contextual information to determine whether a sample
satisfy the given rule, perform the knowledge distillation and
hence significantly boost the performance of that solely with visual
information. Moreover, we found that even with only the contextual
modality, AKD-DBPR can achieve better performance than DBPR
(the relative improvement is 2.69%). One possible explanation is that
the pure data-driven neural networks cannot accurately capture
all the underlying matching rules with the limited labeled samples
and thus need the domain knowledge to overcome this limitation.

Apart from the quantitative analysis, we also provided certain
intuitive examples to illustrate the effects of the attention mecha-
nism in our scheme. Figure 7 illustrates several examples regarding
the rule confidence learned by the attention mechanism. As can
be seen, different levels of rule confidence can be assigned for the
same rule (“no silk + knit”) with different triplets. In addition, we
found that the rules pertaining to the category are usually assigned
higher confidence levels. This may be attributed to that people tend
to put the category attribute at the first place when they make
outfits compared to other attributes. Furthermore, we also noted
that although the contextual metadata indicates that the third triplet
activates the rule “stripe + stripe”, the learned rule confidence is not
much high. This may be due to the fact that the given rule is a bit
fuzzy and general and the visual signals imply the incompatibility

(a) Observed testing tops (b) Unobserved testing tops

Figure 8: Performance of different models.
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Figure 9: Ranking result illustration of AKD-DBPR and DBPR. The bottoms highlighted in the red boxes are the positive ones.
The first example activates the rules “floral + floral” and “coat + dress”, while the second one triggers the rule “white + black”.
between the stripes in the given top i and bottom k . Accordingly, to
certain extent, the attention mechanism can be helpful to overcome
the limitation of the human-defined fuzzy rules.

4.4 On Fashion Item Retrieval (RQ3)
To assess the practical value of our work, we evaluate the proposed
AKD-DBPR towards the complementary fashion item retrieval. As it
is time-consuming to rank all the bottoms for each top, we adopted
the common strategy [13] that feeds each top ti appeared inStest as
a query, and randomly selectedT bottoms as the ranking candidates,
where there is only one positive bottom. Thereafter, by passing them
to the trained neural networks, getting their latent representations
and calculating the compatibility scoremi j according to Eqn.(2), we
generated a ranking list of these bottoms for the given top. In our
setting, we focused on the average position of the positive bottom
in the ranking list and thus adopted the mean reciprocal rank (MRR)
metric [21, 41, 44].

In total, we have 1, 954 unique tops in the testing set. Due
to the sparsity of the real-world dataset, we found there are
1, 262 (64.59%) tops never appeared in Strain . To comprehensively
evaluate the proposed model, we compared it with different models
using different type of testing tops: observed testing tops and
unobserved ones. As can be seen from Figure 8, AKD-DBPR and
DBPR outperform all the other baselines consistently at different
numbers of bottom candidates in all scenarios, which demonstrates
the effectiveness of our models in complementary fashion item
retrieval. In addition, AKD-DBPR and DBPR achieve satisfactory
performance with both observed and unobserved tops, which
validates their capability of handling the cold start problem. Last
but not least, we found that AKD-DBPR outperforms DBPR in both
scenarios, especially with observed testing tops, which reconfirms
the importance of incorporating the domain knowledge. To have an
intuitive understanding of the results, we provided certain intuitive
ranking results of AKD-DBPR and DBPR for testing tops in Figure 9.

The bottoms highlighted in the red boxes are the positive ones. By
checking the context of each example, we found that they both
activate certainmatching rules, such as “floral + floral”, “coat + dress”
and “white + black”, which may contribute to the good performance
of AKD-DBPR.

5 CONCLUSION AND FUTUREWORK
In this work, we present an attentive knowledge distillation scheme
towards compatibility modeling in the context of clothing matching,
which jointly learns from both the specific data samples and general
knowledge rules. Considering that different rules can have different
confidence levels to different samples, we seamlessly sew up the
attention mechanism into the knowledge distillation framework to
attentively assign the rule confidence. Extensive experiments have
been conducted on the real-world dataset and the encouraging
empirical results demonstrate the effectiveness of the proposed
scheme and indicate the benifits of taking the domain knowledge
into consideration in the context of compatibility modeling. We find
that the negative matching rules and category related rules seem
to be more powerful than others. We also exhibited the benefits
of incorporating the attention mechanism into the knowledge
distillation framework. One limitation of our work is that currently
we only rely on the contextual metadata to identify the rules
activated by the given sample, which is largely constrained by
the incomplete and noisy description. In the future, we plan to
explore the potential of visual signals in the rule identification.
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