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ABSTRACT
In this paper, we address the temporal moment localization issue,
namely, localizing a video moment described by a natural language
query in an untrimmed video. This is a general yet challenging
vision-language task since it requires not only the localization
of moments, but also the multimodal comprehension of textual-
temporal information (e.g., “first” and “leaving”) that helps to
distinguish the desired moment from the others, especially those
with the similar visual content. While existing studies treat a given
language query as a single unit, we propose to decompose it into
two components: the relevant cue related to the desired moment
localization and the irrelevant one meaningless to the localization.
This allows us to flexibly adapt to arbitrary queries in an end-
to-end framework. In our proposed model, a language-temporal
attention network is utilized to learn the word attention based on
the temporal context information in the video. Therefore, our model
can automatically select “what words to listen to” for localizing the
desired moment. We evaluate the proposed model on two public
benchmark datasets: DiDeMo and Charades-STA. The experimental
results verify its superiority over several state-of-the-art methods.
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Figure 1: The pipeline of our proposed model.

1 INTRODUCTION
Great progress has been made on video retrieval [5, 26, 31, 39],
the task of retrieving videos from a collection to match the
given language query. However, moment retrieval remains largely
untapped, aiming to find a specific segment (i.e., moment) from
a video when given a natural language description. This task,
also known as temporal moment localization, has been gaining
increasing interests in computer vision. Particularly, given a video
and a query like “the child dances over next to the other people”,
existing solutions commonly use a temporal bounding box (i.e.,
the start and end time points) to localize the temporal moment
corresponding to the query.

In the traditional video retrieval task, the queries are, more often
than not, simple keywords expressing the desired action, objects or
attributes. In contrast, in the task of temporal moment localization,
the given queries are much more complex and sophisticated, which
can be arbitrary natural descriptions, like a phrase or a complete
sentence. As shown in Figure 1, for example, the sentence “A Ferris
wheel first comes into view” is a typical query, emphasizing that
a “Ferris wheel” entity appears with a temporal relation “first”. A
model that only localizes “Ferris wheel” is not satisfactory, since
this entity appears twice in the video. Thereby, resolving this query
requires both finding a moment that contains a “Ferris wheel” and
ensuring that it is the first time of its appearance. Therefore, the
key for temporal moment localization is to well comprehend the
complex query information and attend to useful words which are
the most relevant and significant to localize the desired moment.

We have to mention that, several studies [1, 7] have been
proposed to process such complex queries. These prior efforts
usually feed the whole description into one offline language
processor (e.g., Skip-thoughts [12]) or an online tool (e.g.,
LSTM [16]) to establish one feature vector for the entire query.
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Despite their success, simply treating queries holistically as one
feature vector may obfuscate the keywords that have rich temporal
and semantic cues. That is, they fail to emphasize the words, such
as the “first” in Figure 1, which are significant to localize the
desired moment, the first “Ferris wheel” moment, rather than other
moments containing the similar visual features. For instance, the
second moment also conveying the “Ferris wheel” entity. As we
can see, the correlation between textual components and temporal
moments has not been fully explored. Therefore, it is crucial to build
a language processing model to adaptively select the key textual
words from the query based on different video context.

In this work, we aim to bridge the research gap by integrating
a language processing module, which can capture the spatial-
temporal information better, with the moment localization model.
We expect our method to exploit the correlation between the
textual and visual features and highlight the useful words for the
desired moment. Towards this end, we present a cRoss-modal
mOment Localization nEtwork (ROLE) that jointly learns the query
representation and temporal moment localization, as illustrated in
Figure 1. First, we design a language-temporal attention module
to derive effective query representations, adaptively reweighing
each word’s features according to the query textual information
and moment context information. Such query representation can
identify “which words to listen to” and be more robust to the
query variations that are irrelevant to moment localization. We
then stack a multi-modal processing module to jointly model the
query and temporal context features. We ultimately train a multi-
layer perception (MLP) network to estimate the relevance score
and the location of the desired moment. Extensive experiments on
two public datasets have well justified that our model outperforms
the state-of-the-art baselines significantly.

The contributions of this work are three-fold:
• Wepresent a novel cross-modal temporalmoment localization
approach, which is able to adaptively encode complex and
significant language query information for localizing desired
moments.

• We propose a language-temporal attention network which
jointly encodes the textual query, local moment, and
its context moment information to comprehend query
descriptions. To the best of our knowledge, this is the first
query attention mechanism based network for the temporal
moment localization task.

• We evaluate our proposed model on two large datasets,
DiDeMo and Charades-STA, to demonstrate the performance
improvement. As a side contribution, we released the data
and the codes1.

The rest of the paper is organized as follows. Section 2 reviews
the related work. Section 3 and 4 detail the temporal moment
localization problem and our proposed ROLE model, respectively.
We present the experimental results in Section 5, followed by the
conclusion and future work in Section 6.

2 RELATEDWORK
In this section, we briefly review some studies related to the
temporal moment localization. As it is a fairly new task, there
1https://acmmm18.wixsite.com/role.

are spare literature to refer to. Here we consider three related tasks:
grounding referential expressions, temporal action localization, and
language grounding in the video.

2.1 Grounding Referential Expressions
The task of grounding referential expressions [17, 21, 43, 44] is to
localize an image region described by a given referring expression.
And it is usually formulated as a retrieval problem over image
regions. Therefore, each image is firstly segmented into a set of
region proposals [2, 13, 36, 45], and then different strategies are
adopted to score each proposal candidate with respect to the query
expression. Finally, the proposal candidate with the highest score
is returned as the grounding result.

There are a lot efforts on the computation of matching score
between each proposal candidate and the given expression. Mao et
al. [20] proposed a model jointly considering the local candidate
feature and the whole image feature to predict the matching score
of each proposal candidate. However, it is insufficient to judge
whether a proposal matches the expression. Afterwards, Yu et al.
[42] found that visual comparison to other objects within an image
helps improve performance significantly. Hence, they integrated
the contextual feature extracted from other region proposals in the
image into the model. However, all the methods aforementioned
represent expressions holistically using a Recurrent Neural Network
(RNN). Namely, they either predicted a distribution over referential
expressions, or encoded expressions into a vector representation.
Therefore, they may not well learn the explicit correspondences
between the components in the expression and entities in the image.
Recently, some researchers have tried to parse the given language
expression into textual components instead of treating it as a whole,
and align these components with the image regions end-to-end. Hu
et al. [10] parsed the referential expression into a subject, relation
and object with three soft attention maps, and aligned the extracted
textual representations with image regions using a modular neural
architecture. Similarly, Yu et al. [41] decomposed the expression into
three modular components via a soft attention, related to the subject
appearance, location, and relationship to other objects, respectively.

Although these models are proved to be powerful in their
dedicated task, simply extending them to the temporal moment
localization task is inappropriate. They may ignore the temporal
information of videos, yet it is themost distinctive feature compared
to the static images.

2.2 Temporal Action Localization
Temporal action localization is a task that given a long untrimmed
video, predicting when a specific action starts and ends [6, 15, 19].
Sun et al. [33] addressed the problem of fine-grained action
localization from temporally untrimmedweb videos via transferring
image labels into their model. Later, Shou et al. [27] exploited multi-
stage 3D ConvNets for temporal action localization in untrimmed
long videos in the wild. And Ma et al. [19] introduced novel ranking
losses within the RNN learning objective to better capture the
progression of activities. Meanwhile, Singh et al. [30] extended two-
stream framework [28] via augmenting full-frame image features
with features from a bounding box surrounding the actor. Lately,
Gao et al. [8] introduced a novel temporal unit regression network
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Language Query: Orange cat first attacks the others tail.

6s 10s

Figure 2: Temporal moment localization via language query
in an untrimmed video.

to jointly predict the action proposals and refine the temporal
boundaries by temporal coordinate regression. However, these
action localization methods are restricted to the pre-defined list of
actions. Recently, Gao et al. [7] proposed to localize activities by
natural language queries. They proposed a cross-modal temporal
regression localizer to jointly model the text query and video
moments. Hendricks et al. [1] designed a moment context network
to localize language queries in videos by integrating the local
and global video features. Although these two models perform
well in their tasks, they always encode the whole query as one
single feature, which may be not expressive enough to reveal the
information conveyed in the query.

2.3 Language Grounding in the Video
Different from the video retrieval [3, 38] aiming to retrieve a
video from a set of video candidates given a natural language
query [22, 35, 37], language grounding in the video is a task of
spatially grounding objects and actions in a video, or aligning
textual phrases to temporal video segments [9, 25, 32]. There are
few studies on this issue, and they are severely limited in the natural
language vocabulary. Tellex et al. [34] proposed a model to retrieve
video segments from a home surveillance camera utilizing queries
containing a fixed set of spatial prepositions. Yu et al. [40] only
considered four objects and four verbs to learn representations
of words from short video clips paired with sentences. Lin et al.
[14] proposed a model to locate objects in the video by parsing
the descriptions into a semantic graph that is then matched to
the visual concepts by solving a linear program. Regneri et al.
[24] presented a general purpose corpus that aligns high quality
videos with multiple natural language descriptions of the actions
exhibited in the videos. Bojanowski et al. [4] introduced a method
automatically providing a time stamp for every sentence, namely
aligning a video with its natural language description. Different
from the video-text alignment task which gives a video and a set of
sentences with temporal ordering, we only input one query into
our model. Moreover, methods aligning instructions with videos
are restricted to structured videos as they constrain alignment by
instruction ordering.

3 TEMPORAL MOMENT LOCALIZATION
In this section, we first formulate the task of temporal moment
localization. We then introduce two state-of-the-art models that
are the fundamental components in our work.

To formulate the problem, some notations are declared in
advance. In particular, we use bold capital letters (e.g., X) and
bold lowercase letters (e.g., x) to denote matrices and vectors,
respectively. We employ non-bold letters (e.g., D) to represent

Language
Query 

Moment 
Candidates

Visual 
Encoder

Query 
Encoder

Common Space
Embedding

Loss 
Function

Cross-modal
Processing

Figure 3: The unified framework of the existing temporal
localizationmethods. The dash line is the uniquemodule of
the CTRL model.

scalars, Math calligraphy (e.g., C) as sets, and Greek letters (e.g., λ)
as parameters. If not clarified, all vectors are in column form.

3.1 Problem Formulation
Recently, great progress has been made on activity or object
localization in longer and untrimmed videos, aiming to localize
the temporal activity moments or objects corresponding to the
predefined language vocabulary. However, when we attempt to
localize a specific moment, such as described as “orange cat
first attacks the others tail”, a simple action, object, or attribute
keyword is insufficient to uniquely identify such golden moment.
A straightforward solution is to query with a natural language
phrase. Inspired by this, the task of moment localization in a video
with language query is proposed. It aims to find a specific temporal
segment (i.e., moment) from a video when given a natural language
description [1, 7]. Such moments are affiliated with the start and
end time points localizing the video.

These models commonly work in the moment retrieval setting:
given a video V = { f1, f2, . . . , fN }, where fi represents the i-th
video frame, and a language query Q with the start time τs and end
time τe , i.e., the start time and end time of the desired moment.
Then the video is segmented into a set of moment candidates
C = {c1, c2, . . . , cM } via the sliding window strategy [1, 7], and
each candidate ci is assigned with a temporal bounding box [ts , te ].
Therefore, the models only need to estimate the relevance score of
each moment candidate and the query.

Figure 2 shows an example of the temporal moment localization.
The video depicts that an orange cat looks at the tail of a black one,
jumps up to attack the tail of the black, and then falls down. Here,
we give a language query “orange cat first attacks the others tail”
and expect the moment localization model to return the start time
(6s) and the end time (10s) of the corresponding moment (in the
green bounding box).

3.2 Moment Localization Model
To well match the query and the moment candidates, an intuitive
way is to map the visual features of the moment candidates and the
textual feature of the query into a common space, and thenminimize
the distance of each positive moment-query pairs. Motivated by this
intuition, two state-of-the-art methods are proposed. The first is a
joint video-language model, named as Moment Context Network2
(MCN) [1], in which features of query and videos are encouraged to
be close in a shared embedding space. Analogously, a cross-modal
2https://github.com/LisaAnne/LocalizingMoments.
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Query: A Ferris wheel first comes into view.

Word Embedding
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Word Attention
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A Ferris wheel first comes into view
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⨀ Textual Embedding

Figure 4: Illustration of the Language-Temporal Attention
Network.

localization model, named as Cross-modal Temporal Regression
Localizer3 (CTRL) [7] is proposed, as shown in Figure 3.

These twomodels differ in several points. 1) Context information.
Both models concatenate visual features of the current moment
and its contextual moments into a single vector, and then linearly
transform it as the final visual feature. For constructing the moment
context, MCN takes the entire set of moment candidates, while
CTRL adopts the neighbor pre-context and post-context moments.
2) Query encoder. MCN treats the last output of a LSTM network
as the query feature; meanwhile, CTRL takes the offline Skip-
Thoughts4 feature to represent the query. And 3) cross-modal
processing. CTRL utilizes a multi-modal fusion method to fuse
the query and moment features in the common space; whereas,
MCN directly calculates the distance between the moment and
query features in the common space.

While performing well as compared to the baselines, these
models treat the query holistically and overlook the effectiveness
of keywords conveying the significant spatial-temporal cues. We
note that depending on the distinctiveness of the desired moment,
words in one query contribute differently to the estimations. For
example, if the target moment is about “a girl in a red coat” among
all the people, the words “girl” and “red” should contribute most to
the relevance estimation. If the same girl appears more than one
time and the given query becomes “the girl in red first appears”, the
context information “first” should become the crucial contributor to
localize the desired moment. Therefore, it is natural and intuitive to
integrate an attention mechanism with the moment retrieval modal
to read the query word by word and refine its attention based on
the temporal context information.

4 OUR MODEL
In this section, we detail our cross-modal moment localization
network (ROLE), composing a language-temporal attention
network, amulti-modal processing, and aMLPmodule. In particular,
given a moment candidate ci and a language query Q, we first use
the attention network to adaptively reweigh the weight scores
of the useful words based on the moment contexts. Thereafter,
we leverage the multi-modal processing module to fuse the query
and moment representations. A MLP is conducted to calculate the
relevance score that measures the compatibility among ci and Q

and the moment location.
3https://github.com/jiyanggao/TALL.
4https://github.com/ryankiros/skip-thoughts.

4.1 Language-Temporal Attention Network
Our attention network is shown in Figure 4. For a given query
Q composed of a sequence of T words {wt }

T
t=1, we project each

wordwt into an embedding vector et via Glove [23]. Thereafter, a
Bi-directional LSTM is employed to encode the whole query, taking
the sequence {et }Tt=1 as input, and outputting a forward hidden
state hf wt and a backward hidden state hbwt at each time t . We then
concatenate hf wt and hbwt into ht , which contains the information
from wordwt and the context words before and afterwt . It can be
formulated with the following equations,

et = embeddinд(wt ),
hf wt = LSTM f w (et ,h

f w
t−1),

hbwt = LSTMbw (et ,hbwt−1),
ht = [hf wt ,h

bw
t ].

(1)

To obtain the representation of the given query, a direct way is
to average pooling all the word representations ht . While the above
solution seems to be sound and reasonable, the downside is that all
the words in the query contribute equally to the query embedding,
ignoring their scenario-specific confidence. As mentioned before,
solely using such representations may fail to distinguish the desired
moment from the moments having the similar visual features.
To address the issues, we feed the temporal moment contexts5
into our attention model, which is capable of assigning the more
useful words with higher importance scores. Therefore, given
H = {ht }Tt=1, input moment ci , and its temporal moment contexts
c j (j ∈ {i − n, . . . , i − 1, i + 1, . . . , i + n}), n is the neighbor size of
moment contexts, we formulate the attention model as follows,

rt = f (Wqht +
∑i+n
j=i−n Wcxc j + b),

at =
βT rt∑T
t=1 β

T rt
,

(2)

where xc j is the feature vector of each moment candidate, β is a
trainable vector,Wq andWc respectively represent the embedding
matrix for the textual and temporal, b is a bias vector, and f is the
Rectified Linear Unit (ReLU,max (0;x )) function.

After establishing the attentive embedding of each word in the
query, we can construct the representation for the query as,

q =
T∑
t=1

at et . (3)

4.2 Loss Function
Thus far, we have obtained the textual embedding q and the
temporal embeddings of the current input moment and its
surrounding moments xc j . We hence can derive a cross-modal
representation for the current query-moment pair by employing
the concatenation operator as follows,

xc,q = xci−n ⊕ . . . ⊕ xci−1 ⊕ xci ⊕ xci+1 ⊕ . . . ⊕ xci+n ⊕ q, (4)

where ⊕ denotes the vector concatenation operation. As a result,
xc,q is capable of encoding the information across the textual
modality and visual modality.

5In this paper, the temporal moment contexts are the n-neighbor moment candidates
surrounding the current moment.
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Thereafter, we feed xc,q into a MLP network6, where the
strong representation power of non-linear hidden layers enables
complicated interactions among the features of the cross-modal
representation. In addition, we can leverage the prediction layer to
get the relevance score scq of the moment-query pair (c,q), as well
as the location offset [ts − τs , te − τe ] between the current moment
and the ground truth,

o1 = f1(W1xc,q + b1),
o2 = f2(W2o1 + b2),

...
oL = fL(WLoL−1 + bL),

(5)

where Wl , bl , fl , and ol denote the weight matrix, bias vector,
activation function, and the output vector of the l-th hidden layer,
respectively. As for the activation function in each hidden layer,
we opt for the ReLU unit. Particularly, the output vector oL =
[scq ,δs ,δe ] consists of the matching score scq and the location
offsets δs = ts − τs and δe = te − τe .

4.2.1 Alignment Loss. Similar to the spirit in [7], we cast the
alignment task as a binary classification problem. Given a set of
moment candidates C extracted from a video V and a query Q,
we divide the moment-query pairs into two groups: the aligned
pairs P and the misaligned pairs N . We adopt the alignment loss
to encourage the former to have positive scores and the latter to
have negative scores, as,

Laliдn =
∑

(c,q)∈P
λ1 log(1 + exp(−scq ))

+
∑

(c,q)∈N
λ2 log(1 + exp(scq )),

(6)

where λ1 and λ2 are two hyper parameters balancing the weights
between the positive and negative pairs.

4.2.2 Location Loss. As the bounding box [ts , te ] of the positive
moment candidates may not exactly match the ground truth [τs ,τe ],
there is the location offset between the positive candidates and
ground truth. We denote the location offset as [δ∗s ,δ∗e ], and then
the location offset regression is formulated as follows7,

Llocation =
∑

(c,q)∈P
|δs − δ∗s |+|δe − δ∗e |. (7)

As we can see, during the training phase, the offset regression loss
is only performed on positive samples. As the testing stage, once
we obtain a moment candidate with the highest alignment score,
we can add the predicted location with the offset values. As such,
the final temporal bounding box will be close to the ground truth.

We devise the optimization framework consisting of the
alignment loss and the localization regression loss processes as,

L = Laliдn + λLlocation , (8)

where λ is a hyper-parameter to balance the two losses.

6In our experiments, the number of layers in MLP is set as two.
7Here, we adopted L1-norm function.

Table 1: Statistics of theCharades-STA andDiDeModatasets.

Dataset # Videos # Queries Domain Video Source
Charades-STA 6,672 16,128 Homes Daily Activities

DiDeMo 10,464 40,543 Open Flickr

5 EXPERIMENTS
We first evaluate the effectiveness of our proposed model on
two temporal moment localization datasets: Distinct Describable
Moments (DiDeMo) dataset and Charades-STA.We then investigate
how the well-designed attention network affects the localization.

5.1 Datasets
DiDeMo [1]: This dataset includes distinct video moments paired
with descriptions to uniquely localize the moment in the video. It
contains over 10,000 personal videos lasting 25-30 seconds duration
with over 40,000 localized text descriptions. In the released dataset,
each video is segmented into six five-second moments, and each
moment is represented by a 4,096-d VGG [29] feature. For language
features, they adopted 300 dimensional dense word embeddings
Glove [23] to represent each word.

Charades-STA [7]: The Charades-STA dataset contains 6,672
videos. As the released Charades-STA dataset only contains the
video-description file, we downloaded videos from the website8
and extracted features for each moment candidate9. Particularly,
we first segmented each video into temporal units with window
size of 16 frames, and the window’s overlap is 12 frames. We then
extracted C3D feature10 for each temporal unit and constructed
the moment candidates with different unit sizes of [4,8,16,32]. The
temporal feature of each moment candidate is the mean pooling of
the features of corresponding units.

The statistics of the datasets are summarized in Table 1. The
reported experimental results in this paper are based on the
aforementioned datasets11.

5.2 Experimental Settings
5.2.1 Evaluation Metric. To thoroughly measure our model and
the baselines, we adopted “R@n,IoU=m” proposed in [11] as the
evaluation metric. Specifically, given a language query, this metric
computes the percentage of top-n results having IoU larger than
m. We utilized R(n,m) to represent “R@n,IoU=m” in the following
description.

5.2.2 Baseline models. We compared our method with the
following state-of-the-art baselines:

• MCN [1]: This model is designed for localizing the natural
language queries in videos by integrating local and global
video features. The query feature is extracted by the LSTM
model. As it simply assumes that the given queries and video
features from the corresponding moments should be close
in a common space, the loss function only enforces their

8http://allenai.org/plato/charades/.
9In our paper, we utilize the videos scaled to 480p as the input videos.
10https://github.com/facebook/C3D.
11In the following experiments, we set the context moment number n as 1. And the
length of context window is set as 128 frames on the Charades-STA dataset and 5
seconds on the DiDeMo dataset.
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Figure 5: Performance comparison among the variants of our proposedmodel over theDiDeMo and theCharades-STA datasets.
From left to right: (a) the R@1 vs IoU ∈ {0.1, 0.3, 0.5, 0.7, 0.9} on the DiDeMo dataset; (b) the R@5 vs IoU ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
on the DiDeMo dataset; (c) the R@1 vs IoU ∈ {0.1, 0.3, 0.5, 0.7, 0.9} on the Charades-STA dataset; and (d) the R@5 vs IoU ∈

{0.1, 0.3, 0.5, 0.7, 0.9} on the Charades-STA dataset.

Table 2: Performance comparison between our proposed
model and the state-of-the-art baselines on the Charades-
STA (p-value∗: p-value over R(1, 0.5)).

Method R@1 R@1 R@1 R@5 R@5 R@5 p-value∗IoU=0.1 IoU=0.3 IoU=0.5 IoU=0.1 IoU=0.3 IoU=0.5
MCN 31.26% 13.57% 4.05% 77.60% 50.53% 19.67% 5.30E-09
CTRL 35.05% 21.45% 9.30% 80.43% 65.59% 33.41% 1.80E-02
ROLE 37.39% 25.26% 12.12% 82.82% 70.13% 40.59% -

features to be similar in the shared embedding space. It has
been detailed in Section 3.2.

• CTRL [7]: This is a cross-modal temporal localization
strategy proposed to localize activities by natural language
queries. It jointly models the textual query via the Skip-
Thoughts and video moments, and outputs similarity score
and action boundary. We have described it in Section 3.2.

5.3 Performance Comparison
We conducted an empirical study to investigate whether our
proposed model can achieve better localization performance. The
results of all methods on two datasets are presented in Table 2 and
3, respectively. Several observations stand out:

• MCN performs poorly than the other baselines, probably
because simply treating the entire moment set as the context
feature of each moment candidate can introduce noisy
features and lead to negative transfer. Moreover, as it models
the relations between the given query and moment features
by only enforcing their distance to be close in the common
space, the cross-modal relations have not been fully explored.
In addition, it utilizes the LSTM network to encode the query,
which memorizes all the words and fails to identify the
distinctive words.

• CTRL achieves better moment localization results than MCN.
Because it not only considers the neighbor moments as
contextual information but also contains a cross-modal
processing part, which can exploit the interactions across
the visual and textual modalities. However, we argued that
its expressiveness can be limited by encoding the whole
query holistically, and as discussed in Section 1, different
words contribute differently in localizing the desiredmoment
within the input video and such coarse-grained feature will
bury their varying importance.

• Our proposed ROLE model achieves the best performance,
substantially surpassing all the baselines. Particularly, it
shows consistent improvements over the aforementioned

Table 3: Performance comparison between our proposed
model and the state-of-the-art baselines on the DiDeMo (p-
value∗: p-value over R(1, 0.5)).

Method R@1 R@1 R@1 R@5 R@5 R@5 p-value∗IoU=0.5 IoU=0.7 IoU=0.9 IoU=0.5 IoU=0.7 IoU=0.9
MCN 23.32% 15.35% 15.31% 41.03% 20.37% 19.77% 3.68E-09
CTRL 26.45% 15.45% 15.38% 68.11% 29.00% 26.12% 5.52E-04
ROLE 29.40% 15.68% 15.55% 70.72% 33.08% 29.73% -

two baselines. This verifies the importance of integrating
temporal moment contexts into the query embedding and
selecting distinctive word information from the query.

Note that, in the DiDeMo dataset, since the positive moment-
query pairs are well aligned (i.e., there is no location offset between
them), we only utilized the alignment loss to train CTRL and ROLE.

In addition, we also conducted significant tests between our
model and each of the baselines on the R(1, 0.5) results. We can see
that all the p-values are much smaller than 0.05, indicating that the
advantage of our model is statistically significant.

5.4 Study of the ROLE
We studied variants of our model to further investigate the
effectiveness of the language-temporal attention networks:

• ROLE_NT: We eliminated the temporal context information
part of our language-temporal attention model. That is, each
word attention value is only related to the query and the
current moment, without considering its neighbor context.

• ROLE_NV: Instead of using the language-temporal attention,
we adopted the query attention model which only depends
on the embeddings of the query words. Namely, we
eliminated all the temporal visual information.

• ROLE_BI: We utilized the concatenation of the last output
of Bi-LSTM as the query embedding.

• ROLE_EQ: We set the weights of the Eqn.(3) as the average
value of the words number, i.e., 1/T.

We compared these model variants on the Charades-STA and
DiDeMo datasets, respectively. Figure 5 shows the results regarding
the component-wise comparison:

• Jointly analyzing the performance of ROLE_NV in Figures 5(a)
and 5(b), we found that removing the language-temporal
attention hurts the expressiveness adversely and degrades
the localization results, especially in term of R@1. This
admits that only considering the query information is
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insufficient to identify the keywords related to the desired
moments and highlight the correlations across modalities.

• ROLE_NT performs better than ROLE_NV, indicating
that incorporating visual information of the current
moment is beneficial to strengthen the comprehension
of the given query. And taking advantages of the cross-
modal correlations, ROLE_NT is capable of enriching the
expressiveness of the model.

• Our proposed ROLE shows consistent improvements over
ROLE_NT and ROLE_NV, demonstrating the importance
of visual features from the moment context. Discarding
the visual features (i.e., ROLE_NV) or only considering
the visual feature of the current moment (i.e., ROLE_NT)
overlooks the temporal correlations and further limits
the expressiveness of query-moment comprehension, and
consequently degrades the localization performance. In
addition, the improvements over ROLE_BI and ROLE_EQ
indicates that not all the words in the query are useful for
the localization. Treating the given query holistically as one
feature vector (i.e., ROLE_BI) or considering all the words
in the query contribute equally (i.e., ROLE_EQ) introduces
noisy information to the query embedding, hence influences
the the localization performance.

5.5 Attention Visualization
Apart from achieving the superior performance, the key advantage
of ROLE over other methods is that its language-temporal attention
is able to distinguish the most relevant words to the ground truth
moment. Towards this end, we showed some examples, and then
visualized their attention values and moment localization results
as demonstrated in Figure 6.

Figure 6(a) depicts that people including women and men are
enjoying the scenery on the top of a mountain with some sitting on
the stone while others standing on the distant highlands. Given a
query that “Woman in red comes into view”, we expect the retrieved
moment should contain a womanwearing a red coat. Intuitively, the
distinctive information for localizing the desired moment should
be “woman” and “red”. We fed the video into our ROLE, as well as
the query, and consequently obtained the attention score for each
word in the description. Several interesting observations stand out:
1) the word “woman” is marked in the darkest orange, reflecting
that this word attracts the most attention; 2) the words “in” and
“red” are marked in orange reflecting fewer attentions obtained
compared to “woman”; and 3) the remaining three words have
the least attention values. These findings are consistent with our
expectation, and further demonstrate that our proposed ROLE is
capable of adaptively identifying the useful words, according to the
temporal moment context. Hence, this verifies the effectiveness of
our language-temporal attention network.

Figure 6(b) shows another example, where the video describes
a scene: a man is typing on the notebook, drinking water from
a glass, and then back to type. When retrieving a moment by
“A person takes a drink from a glass of water”, we expected our
model to distinguish two activities in the video. From the attention
result shown in Figure 6(b), we found that the words related to
the action “drinking water” attract more attention than other

Query: Woman in red comes into view.

Woman in red comes into viewAttention:

(a) The moment localization result on the DiDeMo.
Query: The person takes a drink from a glass of water.

The person takes a drink from a glass of waterAttention:

(b) The moment localization result on the Charades-STA.
Figure 6: Visualization of the language-temporal attention
on DiDeMo and Charades-STA. The Ground truth moments
are outlined in the orange box, while the green dash box
shows our prediction with the alignment score and the blue
dash box shows the localization result with our regression
correction. The word attention is presented with different
colors, and the darker color states the higher value.

words do. This agrees with our previous analysis. Although the
alignment result (i.e., the green dash box) is not that satisfactory, it
indeed captures the corresponding action moment. Furthermore,
our model can correct the alignment result via the regression part
and provide a more accurate result (i.e., the blue dash box). This
justifies the effectiveness of our proposed attention mechanism and
the regression loss.

5.6 Qualitative Results
To gain the deep insights into our proposed ROLE model,
we illustrated several moment localization results via different
language queries. In particular, the examples from DiDeMo and
Charades-STA are shown in Figure 7 and 8, respectively. In addition,
we also displayed the localization results by the baselines.

Figure 7 describes a moving camera scene, where a small white
car disappears and another car is still at the original place. We
then utilized the aforementioned models to localize the moment
corresponding to “The small white car is leaving the frame”.
Comparing the retrieval results from all the methods, we have
the following observations:

• MCN simply returns a moment containing the “white car”
from the moment candidates, ignoring the more important
distinctive activity “leaving the frame”. It is probably because
1) MCN treats the entire candidate set as the global feature
to enhance the representation as the current moment. When
most moments within the video are related to the another
car, the global feature fails to represent the desired scene
precisely; and 2) it adopts the last state of LSTM as the textual
embedding for the query, which is insufficient to select the
keyword like “leaving”.

• As Figure 7(c) illustrates, CTRL achieves the unsatisfactory
result by returning amoment containing two cars. Compared
with MCN, while integrating neighbor moments as the
context instead of the whole background, it captures parts
of the desired moments since the query is modeled via
the offline Skip-Thoughts tool and overlooks the sequential
relation “leaving”. Synthesizing the above reasons, it only
returns the suboptimal moment.
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Query: The small white car is leaving the frame.

0s 15s

(a) The desired moment of the moment localization.

10s 15s

(b) The moment localization result of the MCN.

0s 5s

(c) The moment localization result of the CTRL.

0s 15s

The small white car is leaving the frame

(d) The moment localization result of the ROLE.
Figure 7: Moment localization results on the DiDeMo
dataset. All the above figures are the R@1 results. The gray
bar denotes the time line. The red, blue and green bounding
boxes denote the ground truth, the result of baseline model
and our proposed model, respectively.

• Our proposed ROLE outperforms other baselines as shown in
Figure 7(d). The localized moment with the query attention
indicates that our model can capture not only the desired
entity “small white car” but also the sequential relation
“leaving”. It again verifies the effectiveness of our proposed
temporal moment localization model.

Similarly, as for the example in Figure 8, our model generates
more accurate results than those of other models do. As we can
see, there are two persons in the video, one is dressing and
finishing cloth while the other is having something. Hence the
word “dressing” is the most important information to distinguish
the desired moment from the others as we expected. Since MCN
and CTRL model the language query holistically, the words are
considered to have equal contributions to the final prediction. This
may introduce noisy information into the textual representation.
Moreover, they rarely identify the distinctive words, such as
“dressing”, from the query. As a result, MCN returns a moment
that the person is finishing clothes, while CTRL selects the moment
containing the end part of the dressing action. Compared with these
two methods, the moment returned by our model has the largest
IoU with the ground truth moment. However, it is not equal to the
ground truth. The reason may be that we adopted the coarse grain
sliding window to generate moment candidates for Charades-STA.

6 CONCLUSION AND FUTUREWORK
In this paper, we present a cross-modal moment localization model
to localize a desired moment given the language description. To well
model the explicit correspondence between the textual components
and temporal moments in the video, we devise a language-temporal
attention model to adaptively identify the useful word information
based on the temporal context. Moreover, we also perform extensive
experiments on two public benchmark datasets to demonstrate

Query: Another person is dressing.

0s 11.4s

(a) The desired moment of the moment localization.

12.2s10.0s

(b) The moment localization result of the MCN.

9.3s5.7s

(c) The moment localiation result of the CTRL.

4.2s 9.6s

Another person is dressing

(d) The moment localization result of the ROLE.
Figure 8: Moment localization results on the Charades-STA
dataset. All the above figures are the R@1 results. The gray
bar denotes the time line. The red, blue and green bounding
boxes denote the ground truth, the result of baseline model
and our proposed model, respectively.

the effectiveness of our proposed model. As a byproduct, we have
released the data, codes, and parameter settings to facilitate research
in the community.

In the future, we plan to deepen or widen our work from the
following aspects: 1) We will integrate the spatial information of
the corresponding frames into our model. Because there are some
descriptions related to the spatial location, such as “left of the table”,
we should take the spatial relationship among all the objects in a
frame into account; 2) We will incorporate reinforce learning into
our model to adaptively decide both where to look at next and when
to predict. This will not need to generate moment candidates via
the multi-scale sliding window segmentation; And 3) we plan to
incorporate hashing module [18] into our model to speed up the
retrieval process.
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