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ABSTRACT
Micro-videos, a new form of user generated contents
(UGCs), are gaining increasing enthusiasm. Popular micro-
videos have enormous commercial potential in many ways,
such as online marketing and brand tracking. In fact, the
popularity prediction of traditional UGCs including tweets,
web images, and long videos, has achieved good theoretical
underpinnings and great practical success. However, little
research has thus far been conducted to predict the
popularity of the bite-sized videos. This task is non-
trivial due to three reasons: 1) micro-videos are short
in duration and of low quality; 2) they can be described
by multiple heterogeneous channels, spanning from social,
visual, acoustic to textual modalities; and 3) there are
no available benchmark dataset and discriminant features
that are suitable for this task. Towards this end, we
present a transductive multi-modal learning model. The
proposed model is designed to find the optimal latent
common space, unifying and preserving information from
different modalities, whereby micro-videos can be better
represented. This latent space can be used to alleviate
the information insufficiency problem caused by the brief
nature of micro-videos. In addition, we built a benchmark
dataset and extracted a rich set of popularity-oriented
features to characterize the popular micro-videos. Extensive
experiments have demonstrated the effectiveness of the
proposed model. As a side contribution, we have released the
dataset, codes and parameters to facilitate other researchers.
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1. INTRODUCTION
The last couple of years have witnessed the unprecedented

growth of smart mobile devices, enabling users to record
life stories vividly with short videos and then instantly
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upload them to social media websites, such as Snapchat1

and Vine2. Since micro-videos, acting more like ‘live action
photographs’, are usually short in length, they need little
bandwidth and hence gain tremendous user enthusiasm.
The limits regarding the maximum length of micro-videos
on Snapchat and Vine, are set as 10 and 6 seconds,
respectively. Considering Vine as an example, its video
length distribution over our collected 303, 242 Vine videos
is illustrated in Figure 1. Micro-videos, representing a new
form of user generated contents (UGCs), can be viewed,
discussed and even reposted by users once they are uploaded,
which leads to their rapid rise. It is reported that Vine hit
1.5 billion daily loops3 in 20154 and Snapchat hit 7 billion
daily views in 20165. As a video messaging platform, it is
hard to crawl micro-videos from Snapchat. Hence, we focus
on Vine here, which can be gathered more easily for research.

Interestingly, among the tremendous volume of micro-
videos, some popular ones will be widely viewed and spread
by users, while many only gain little attention. This
phenomena is similar to many existing social media sites,
such as Twitter6. For example, the micro-video about
the explosion that interrupted during the France-Germany
soccer match in 2015 has been successfully looped by
over 330 million times. Obviously, if we can identify the
hot and popular micro-videos in advance, it will benefit
many applications, such as online marketing and network
reservation. Regarding online marketing, the accurate early
prediction of popular micro-videos can facilitate companies’
planning of advertising campaigns and thus maximizing
their revenues. For network service providers, they can
timely reserve adequate distributed storage and bandwidth
for popular ones, based on the prediction. Therefore, it is
highly desirable to develop an effective scheme to accurately
predict the popularity of micro-videos.

However, the popularity prediction of micro-videos is
non-trivial due to the following challenges. First of
all, due to the short duration of micro-videos, each
modality can only provide limited information, the so-
called modality limitation. Fortunately, micro-videos always
involve multiple modalities, namely, social, visual, acoustic

1
https://snapchat.com.

2
https://vine.co.

3
Loops refer to the times a micro-video has been viewed.

4
http://blog.vine.co.

5
http://goo.gl/YYnBbd.

6
https://twitter.com.
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Figure 1: Duration distribution over our collected
303, 242 micro-videos.

and textual7 modalities. In a sense, these modalities are co-
related rather than independent and essentially characterize
the same micro-videos. Therefore, the major challenge
lies on how to effectively fuse micro-videos’ heterogeneous
clues from multiple modalities [31, 30, 36]. The most
naive strategies are early fusion and late fusion [27]. They,
however, fail to account for the relatedness among multiple
modalities. Therefore, it is important to take modality
relatedness into consideration. Secondly, due to certain
external factors, such as camera shaking and lighting
condition, some modalities of the micro-videos, such as
visual or acoustic ones, may be of poor quality, which
is another kind of modality limitation. Hence, learning
directly from the original feature spaces of modalities,
which was adopted by most multi-modal learning methods
may be imprecise. Consequently, to improve the learning
performance, how to compensate the noisy modality with
reliable ones poses a crucial challenge for us. The last
challenge we are facing is the lack of benchmark dataset to
support our research. We found that both the contents and
social influence of micro-video publishers would account for
their popularity. As far as we know, the only available micro-
video dataset [24] does not contain the important textual
and social modalities and is lack of popularity indicators as
the ground truth, which makes it unsuitable for our research.
It is thus necessary to build a comprehensive micro-video
dataset and further extract a rich set of discriminant features
to enhance the learning performance.
To address the aforementioned challenges, we present

a novel Transductive Multi-modAL Learning approach,
TMALL for short, to predicting the popularity of micro-
videos. As illustrated in Figure 2, we first crawl a
representative micro-video dataset from Vine and develop
a rich set of popularity-oriented features from multi-
modalities. We then perform multi-modal learning to
predict the popularity of micro-videos, which seamlessly
takes the modality relatedness and modality limitation
into account by utilizing a common space shared by all
modalities. We assume that there exists an optimal common
space, which maintains the original intrinsic characteristics
of micro-videos in the original spaces. In the light of this, all
modalities are forced to be correlated. Meanwhile, micro-
videos with different popularity can be better separated
in such optimal common space, as compared to that of
each single modality. In a sense, we alleviate the modality
limitation problem. Extensive experiments on this real-
world dataset have well-validated our work.
Our main contributions can be summarized in threefold:

7
Micro-videos are usually associated with certain textual data, such

as video descriptions given by the video owners.

• We approached the popularity prediction of micro-
videos by proposing a TMALL model, which is able
to simultaneously model the modality relatedness and
handle the modality limitations by introducing a
common space shared among all modalities. Moreover,
we have derived its closed-form solution rigorously.

• We developed a rich set of popularity-oriented
features from multiple modalities to comprehensively
characterize the popular micro-videos. Apart from
numerical results, we also provided several deep
insights based on the experimental results.

• We constructed a large-scale micro-video dataset,
comprising of 303, 242 micro-videos, 98, 166 users and
120, 324 following relationships. We have released our
compiled dataset, codes and parameters8 to facilitate
other researchers to repeat our experiments and verify
their proposed approaches.

The remainder of this paper is structured as follows. Section
2 reviews the related work. Data preparation is introduced
in Section 3. Sections 4 and 5 detail the proposed TMALL
model and the feature extraction, respectively. Section 6
presents the experimental results and analysis, followed by
our concluding remarks in Section 7.

2. RELATED WORK
Popularity predication and multi-view learning are both

related to this work.

2.1 Popularity Prediction
Due to its enormous commercial potential, popularity

prediction of UGCs has attracted great attention from both
the industry and academia [12, 20, 5, 29, 11]. Hong et al.
[12] explored the popularity prediction of tweets, which is
measured by the number of future retweets, by introducing
a rich set of features, such as topological features, temporal
features and meta features. Beyond the text popularity
prediction, McParlane et al. [20] focused on the popularity
of images. They extracted some sophisticated features and
cast the task of image popularity prediction as a problem
of binary classification, where the given image would be
classified as popular or not. Later, Cappallo et al. [5]
proposed a latent ranking method for the image popularity
prediction solely based on the visual content. The proposed
method was evaluated on several image datasets collected
from micro-blogging and photo-sharing websites. Although
huge success has been achieved by these approaches, limited
efforts have thus far been dedicated to the problem of video
popularity prediction, where multiple modalities coexist.
Noting this gap, Trzcinski et al. [29] shifted from images
to videos, and studied the problem of video popularity
prediction utilizing both the visual clues and the early
popularity pattern of the video once it is released. However,
this approach suffered from two limitations. First, the
proposed approach can only work on videos that have been
published over a certain period. Second, the authors only
used the traditional machine learning method—Support
Vector Regression (SVR), which failed to make full use of the
relationship among modalities. As a complement, we aim to
timely predict the popularity of a given micro-video even
before it get published by proposing a novel multi-modal
learning scheme.
8
The dataset can be accessible via http://acmmm2016.wix.com/

micro-videos.
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Figure 2: Micro-video popularity prediction via our proposed TMALL model.

2.2 Multi-View Learning
To deal with data containing multiple modalities, multi-

view learning is a highly feasible paradigm. Multi-view
learning is designed to improve the learning performance
by introducing a function to model each view and jointly
optimizing all functions. Existing work follows this line
can be roughly classified into two categories: co-training
and subspace learning. Co-training algorithms usually
train separate learners on distinct views, which are then
imposed to be consistent across views. Sindhwani et. al.
[26] introduced a co-regularization framework for multi-
view semi-supervised learning, as an extension of supervised
regularization algorithms. Noticing that corruption may
exist among different views, Christoudias et al. [7]
proposed an approach for multi-view learning taking the
view disagreement into consideration. In contrast, subspace
learning approaches hold the general assumption that
different views are generated from a latent view. Chaudhuri
et al. [6] first employed canonical correlation analysis (CCA)
to learn an efficient subspace, on which traditional machine
learning algorithms can be applied. Gao et al. [9] later
introduced a novel multi-view subspace clustering method,
which is able to simultaneously perform clustering on the
subspace of each view and guarantee the consistency among
multiple views by a common clustering structure.
Overall, compelling success has been achieved by multi-

view learning models on various problems, such as
categorization [26, 28], clustering [6, 9] and multimedia
retrieval [18, 19]. However, to the best of our knowledge,
limited efforts have been dedicated to applying multi-view
learning in the context of micro-video popularity prediction,
which is the major concern of our work.

3. DATA COLLECTION
This section details the dataset setup, which covers the

crawling strategy, and ground truth construction.

3.1 Crawling Strategy
Our micro-video dataset was crawled from one of the most

prominent micro-video sharing social networks, Vine. Beside
the historical uploaded micro-videos, Vine also archives
users’ profiles and their social connections.
In particular, we first randomly selected 10 active Vine

users from Rankzoo9, which provides the top 1, 000 active

9
https://rankzoo.com.

users on Vine, as the seed users. We then adopted the
breadth-first crawling strategy to expand the seed users
by crawling their followers. Considering that these seed
users may have millions of followers, we practically only
retained the first 1, 000 returned followers for each seed
user to improve the crawling efficiency. After three layers
of crawling, we harvested a densely connected user set
consisting of 98, 166 users as well as 120, 324 following
relationships among users. For each user, his/her brief
profile was crawled, containing full name, description,
location, follower count, followee count, like count, post
count and loop count of all post videos. Besides, we
also collected the timeline (the micro-video posting history,
including the repostings from others.) of each user between
July 1st and October 1st, 2015. Finally, we obtained 1.6
million video postings, including a total number of 303, 242
unique micro-videos with a total duration of 499.8 hours.

3.2 Ground Truth Construction
We employed four popularity-related indicators, namely,

the number of comments (n comments), the number of likes
(n likes), the number of reposts (n reposts), and the number
of loops/views (n loops) to measure the popularity of micro-
videos. Figure 3 illustrates the proportion of micro-videos
regarding each of the four indicators in our dataset. It is
noticed that the distributions of them are different, and
each of them measure one aspect of the popularity. In order
to comprehensively and precisely measure the popularity of
each micro-video, yi, we linearly fuse all the four indicators:

yi =
(n reposts+ n comments+ n likes+ n loops)

4
. (1)

4. OUR PROPOSED TMALL MODEL

4.1 Notation
We first declare several notations. We employ bold capital

letters (e.g., X) and bold lowercase letters (e.g., x) to denote
matrices and vectors, respectively. We use non-bold letters
(e.g., x) to represent scalars, and Greek letters (e.g., β) as
parameters. If not clarified, all vectors are in column form.

Without loss of generality, suppose we have N labeled
samples and M unlabeled samples with K > 2 modalities.
It is worth noting that the unlabeled samples also serve
as testing samples. Zk stands for the number of features
generated from the k-th modality. Then the k-th modality
can be represented as Xk ∈ R(N+M)×Zk . The popularity of
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Figure 3: Distribution of the number of comments,
likes, reposts and loops of micro-videos in our
dataset.

all the videos are denoted by y = {y1, y2, · · · , yN}T ∈ RN .
Let f = {f1, f2, · · · , fN , fN+1, fN+2, · · · , fN+M}T ∈ RN+M

stand for the predicted results regarding popularity for all
samples, including the labeled and unlabeled ones. We
aim to jointly learn the common space X0 ∈ R(N+M)×Z0

shared by multiple modalities and the popularity for the M
unlabeled micro-videos.
Our proposed model targets at reasoning from observed

training micro-videos to testing ones. Such prediction
belongs to transductive learning, in which both labeled
samples as well as unlabeled samples are available for
training. It hence obtains better performance. In contrast,
inductive model is reasoning from observed training cases to
general rules, which are then applied to the test cases.

4.2 Problem Formulation
It is apparent that different modalities may contribute

distinctive and complementary information about micro-
videos. For example, textual modality gives us hints about
the topics of the given micro-video; acoustic and visual
modalities may respectively convey location and situation of
micro-videos, and user modality demonstrates the influence
of the micro-video publisher. These clues jointly contribute
to the popularity of a micro-video. Obviously, due to the
noise and information insufficiency of each modality, it may
be suboptimal to conduct learning directly from each single
modality separately. In contrast, we assume that there
exists an optimal latent space, in which micro-videos can be
better described. Moreover, the optimal latent space should
maintain the original intrinsic characteristics conveyed by
multi-modalities of the given micro-videos. Therefore,
we penalize the disagreement of the normalized Laplacian
matrix between the latent space and each modality. In
particular, we formalize this assumption as follows. Let
Sk ∈ R(N+M)×(N+M) be the similarity matrix10, which is
computed by the Gaussian similarity function as follows,

Sk(i, j) =

exp
(
−

∥∥∥∥xi
k − xj

k

∥∥∥∥2

2σ2
k

)
, if i ̸= j;

0 , if i = j.

(2)

where xi
k and xj

k are the micro-video pairs in the k-th
modality space. Thereinto, the radius parameter σk is
simply set as the median of the Euclidean distances over
all video pairs in the k-th modality. We then derive the
corresponding normalized Laplacian matrix as follows,

L(Sk) = I−D
− 1

2
k SkD

− 1
2

k , (3)

10
To facilitate the illustration, k ranges from 0 to K.

where I is a (N +M)× (N +M) identity matrix and Dk ∈
R(N+M)×(N+M) is the diagonal degree matrix, whose (u, u)-
th entry is the sum of the u-th row of Sk. Since Sk(i, j) > 0,
we can derive that tr(L(Sk)) > 0. We thus can formulate
the disagreement penalty between the latent space and the
original modalities as,

K∑
k=1

∥ 1

tr(L(S0))
L(S0)−

1

tr(L(Sk))
L(Sk) ∥2F , (4)

where tr(A) is the trace of matrix A and
∥∥·∥∥

F
denotes

the Frobenius norm of matrix. In addition, inspired by
[32], considering that similar micro-videos attempt to have
similar popularity in the latent common space, we adopt the
following regularizer,

1

2

N+M∑
m=1

N+M∑
n=1

( f(xm
0 )√

D0(xm
0 )

− f(xn
0 )√

D0(xn
0 )

)2

S0(m,n)

= fTL(S0)f . (5)

Based upon these formulations, we can define the loss
function that measures the empirical error on the training
samples. As reported in [22], the squared loss usually yields
good performance as other complex ones. We thus adopt the
squared loss in our algorithm for simplicity and efficiency.
In particular, since we do not have the labels for testing
samples, we only consider the squared loss regarding the N
unlabeled samples to guarantee the learning performance.
We ultimately reach our objective function as,

min
f ,L(S0)

N∑
i=1

(yi − fi)
2 + µfTL(S0)f

+ λ

K∑
k=1

∥ 1

tr(L(S0))
L(S0)−

1

tr(L(Sk))
L(Sk) ∥2F , (6)

where λ and µ are both nonnegative regularization
parameters. To be more specific, λ penalizes the
disagreement among the latent space and modalities, and µ
encourages that similar popularity will be assigned to similar
micro-videos.

4.3 Alternative Optimization
To simplify the representation, we first define that,

L̃ =
1

tr(L(S0))
L(S0),

L̃k =
1

tr(L(Sk))
L(Sk).

(7)

Therefore, the objective function can be transformed to,

min
f

N∑
i=1

(yi − fi)
2 + λ

K∑
k=1

∥∥L̃− L̃k

∥∥2

F
+ µfT L̃f ,

subject to tr(L(S0)) = 1. (8)

Furthermore, to optimize L̃ more efficiently, inspired by the
property that tr(L̃k) = 1, we let,

L(S0) =

K∑
k=1

βkL̃k, subject to

K∑
k=1

βk = 1. (9)
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Consequently, we have,

L̃ =
1

tr(L(S0))
L(S0) =

K∑
k=1

βkL̃k,

subject to
K∑

k=1

βk = 1. (10)

Interestingly, we find that βk can be treated as the co-
related degree between the latent common space and each
modality. It is worth noting that we do not impose the
constraint of β ≥ 0, since we want to keep both positive
and negative co-relations. A positive coefficient indicates
the positive correlation between the modality space and the
latent common space, while a negative coefficient reflects the
negative correlation, which may be due to the noisy data of
the modality. The larger the βk is, the higher correlation
between the latent space and the k-th modality will be. In
the end, the final objective function can be written as,

min
f ,β

N∑
i=1

(yi − fi)
2 + λ

K∑
k=1

∥∥∑K
i=1 βiL̃i − L̃k

∥∥2

F
+

µfT
K∑

k=1

βkL̃kf + θ
∥∥β∥∥2

, subject to eTβ = 1, (11)

where β = [β1, β2, · · · , βK ]T ∈ RK and e = [1, 1, · · · , 1]T ∈
RK . θ is the regularization parameter, introduced to avoid
the overfitting problem. We denote the objective function
of Eqn.(11) as Γ. We adopt the alternating optimization
strategy to solve the two variables f and β in Γ. In
particular, we optimize one variable while fixing the other
one in each iteration. We keep this iterative procedure until
the Γ converges.

4.3.1 Computing βj with f fixed
We first fix f and transform the objective function Γ as,

min
β

λ

K∑
k=1

N+M∑
t=1

∥∥∥M(t)β − l̃
(t)
k

∥∥∥2

F
+ µgTβ + θ

∥∥β∥∥2
,

subject to eTβ = 1, (12)

where g = [fT L̃1f , f
T L̃2f , · · · , fT L̃Kf ]T ∈ RK , M(t) =

[̃l
(t)
1 , l̃

(t)
2 , · · · , l̃(t)K ] ∈ R(N+M)×K and l̃

(t)
k ∈ RN+M denotes

the t-th column of L̃k. For simplicity, we replace l̃
(t)
K with

l̃
(t)
k eTβ, as eTβ = 1. With the help of Lagrangian, Γ can
be rewritten as follows.

min
β

λ

K∑
k=1

N+M∑
t=1

∥∥∥(M(t) − l̃
(t)
k eT )β

∥∥∥2

F
+ µgTβ + δ(1− eTβ)

+ θ
∥∥β∥∥2

, (13)

where δ is a nonnegative Lagrange multiplier. Taking
derivative of Eqn.(13) with respect to β, we have,

∂Γ

∂β
= Hβ + µg − δe, (14)

where,

H = 2
[(

λ

K∑
k=1

N+M∑
t=1

(M(t) − l̃
(t)
k eT )T (M(t) − l̃

(t)
k eT )

)
+ θI

]
,

(15)

and I is a K ×K identity matrix. Setting Eqn.(14) to zero,
we have,

β = H−1(δe− µg). (16)

Substituting Eqn.(16) into eTβ = 1, we have,
δ =

1 + µeTH−1g

eTH−1e
,

β = H−1
[e+ µeTH−1ge

eTH−1e
− µg

]
.

(17)

According to the definition of positive-definite matrix, H
is always positive definite and hence invertible. Therefore,
H−1 is also positive definite, which ensures eTH−1e > 0.

4.3.2 Computing f with βj fixed
With fixed βj , taking derivative of Γ with respect to fi,

where 1 ≤ i ≤ N , we have,

∂Γ

∂fi
= 2(fi − yi) + 2µ

N+M∑
j=1

L̃(i, j)fj . (18)

We then take derivative of the Γ with respect to fi, where
N + 1 ≤ i ≤ N +M . We reach,

∂Γ

∂fi
= 2µ

N+M∑
j=1

L̃(i, j)fj . (19)

In a vector-wise form, we restate the solution of f as follows,

f = G−1ŷ, (20)

whereG = Î+µ
∑K

k=1 βkL̃k, ŷ = {y1, y2, · · · , yN , 0, 0, · · · , 0}
and Î ∈ R(N+M)×(N+M) is defined as follows,

Î(i, j) =

{
1 if i = j, and 1 ≤ i ≤ N,

0 otherwise.
(21)

5. FEATURE EXTRACTION
It is apparent that both the publisher influence and

content influence contribute to the popularity of UGCs.
In particular, we characterized the publisher influence via
the social modality, and the content influence via visual,
acoustic and textual modalities. For content influence,
we first examined the popular micro-videos in our dataset
and propose three common characteristics of online micro-
videos. For each characteristic, we then explained the
insights, and transformed it into a set of features for
video representation. Finally, we developed a rich set of
popularity-oriented features from each modality.

5.1 Observations
Universal Appeal. The subjects of widely popular

micro-videos cannot be something that can only be
appreciated by a small group of people. Therefore, the topics
and objects contained in micro-videos should be something
common so that to be interpreted the same way across
people and cultures. To capture this characteristic, we
extracted Sentence2Vector feature from the textual modality
and deep object feature from the visual one.

Emotional Content. People are naturally drawn to
things that arouse their emotions. Micro-videos showing
funny animals or lovely babies make people feel urge to
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share them to express the same emotions. As a result, micro-
videos that are highly emotional are more likely to be shared.
Therefore, we extracted textual sentiment, visual sentiment
features for each video as well as several acoustic features,
which is widely used in emotion recognition in music [33].
High Quality and Aesthetic Design. When people

share information on social networks, people are actually
showing a little piece of themselves to their audience.
Therefore, high quality and aesthetic design of the content,
which could reflect the taste of people, is another important
characteristic of popular micro-videos. Color histogram,
aesthetic feature and visual quality feature were thus
extracted to encode such characteristic. In addition, the
acoustic features we extracted are frequently used in music
modeling, which could help to detect music in the audio
track of micro-videos [17].

5.2 Social Modality
It is intuitive that micro-videos posted by users, who has

more followers or has a verified account, are more likely to
be propagated, and thus tend to receive a higher number
of audiences. To characterize the influence of micro-video
publishers, we developed the following publisher-centric
features for micro-videos.

• Follower/Followee Count. The number of followers
and followees of the given micro-video publisher.

• Loop Count. The total number of loops received by
all the posts of the publisher.

• Post Count. The number of posts generated by the
publisher.

• Twitter Verification. A binary value indicating
whether the publisher has been verified by Twitter11.

5.3 Visual Modality
Due to the short-length of micro-videos, the visual content

is usually highly related to a single theme, which enables
us to only employ a few key frames to represent the whole
micro-video. Inspired by this, we extracted the visual
features from certain key frames. The mean pooling was
performed across all the key frames to create a fixed-length
vector representation of each micro-video.

5.3.1 Color Histogram
It has been found that most basic visual features (i.e.,

intensity and the mean value of different color channels in
HSV space) except color histogram, have little correlation
with popularity [15]. Color histogram has outstanding
correlation due to the fact that striking colors tend to catch
users’ eyes. Therefore, we only extracted color histogram
as the basic visual feature to characterize popular micro-
videos. To reduce the size of color space, we grouped the
color space into 50 distinct colors, which results in a 50-D
vector for each frame.

5.3.2 Object Features
It has been studied that popular UGCs are strongly

correlated with the objects contained in the videos [10]. We
believe that the presence of certain objects affect micro-
videos’ popularity. For example, micro-videos with ‘cute

11
A Vine account can be verified by Twitter, if it is linked to a verified

Twitter account.

dogs’ or ‘beautiful girls’ are more likely to be popular
than those with ‘desks’ and ‘stones’. We thus employed
the deep convolutional neural networks (CNNs) [16], a
powerful model for image recognition problems [35], to
detect objects in micro-videos. Specifically, we applied the
well-trained AlexNet DNN provided by the Caffe software
package [13] to the input key frames. The output of the
fc7 layer and the final 1, 000-way softmax layer in AlexNet
is a probability distribution over the 1, 000 class labels
predefined in ImageNet. We treat them as our feature
representation of each frame. In the end, a mean pooling
was performed over the frames to generate a single 4, 096-D
vector and 1, 000-D vector for each micro-video.

5.3.3 SentiBank Features
We performed the sentiment analysis of the visual

modality due to that the sentiment of UGCs has been
proven to be strongly correlated with their popularity [10].
In particular, we extracted the visual sentiment features
based on the deep CNNs model which was trained on the
SentiBank dataset[4]. SentiBank contains 2, 089 concepts
and each of them invokes specific sentiments such as ‘cute
girls’ and ‘funny animals’. Therefore, after mean pooling
among keyframes, each micro-video is represented by a
2, 089-D vector.

5.3.4 Aesthetic Features
Aesthetic features are a set of handful selected features

related to the principles of the nature and appreciation of
beauty, which have been studied and found to be effective
in popularity prediction [8]. Intuitively, micro-videos that
are objectively aesthetic are more likely to be popular. We
employed the released tool12 [3] to extract the following
aesthetic features: a) dark channel feature; b) luminosity
feature; c) s3 sharpness; d) symmetry; e) low depth of field;
f) white balance; g) colorfulness; h) color harmony, and i)
eye sensitivity, at 3× 3 grids over each key frame. We then
calculated: a) normalized area of dominant object; and b)
normalized distances of centroid of dominant objects with
respect to four stress points at frame level. In the end, we
obtained 149-D aesthetic features for each micro-video.

5.3.5 Visual Quality Assessment Features
It is important that the visual quality of popular contents

are maintained at an acceptable level, given rising consumer
expectations of the quality of multimedia content delivered
to them [25]. In particular, we employed the released tool13

to extract the micro-videos quality features based on the
motion and spatio-temporal information, which have been
proven to correlate highly with human visual judgments of
quality. This results in a 46-D features.

5.4 Acoustic Modality
Acoustic modality usually works as an important

complement to visual modality in many video-related tasks,
such as video classification [34]. In fact, audio channels
embedded in the micro-videos may also contribute to
the popularity of micro-videos to a large extent. For
example, the audio channel may indicate the quality of a
given micro-video and convey rich background information
about the emotion as well as the scene contained in the

12
http://www.ee.columbia.edu/˜subh/Software.php.

13
http://live.ece.utexas.edu/.
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micro-video, which significantly affects the popularity of a
micro-video. The acoustic information is especially useful
for the cases where the visual features could not carry
enough information. Therefore, we adopted the following
widely-used acoustic features, i.e., Mel-Frequency Cepstral
Coefficients (MFCC) [17] and Audio-Six (i.e., Energy
Entropy, Signal Energy, Zero Crossing Rate, Spectral
Rolloff, Spectral Centroid, and Spectral Flux [33]). These
features are frequently used in different audio-related tasks,
such as emotion detection and music recognition. We finally
obtained a 36-D acoustic feature vector for each micro-video.

5.5 Textual Modality
Micro-videos are usually associated with textual modality

in the form of descriptions, such as “when Leo finally gets
the Oscar” and “Puppy dog dreams”, which may precisely
summarize the micro-videos. Such summarization may
depict the topics and sentiment information regarding the
micro-videos, which has been proven to be of significance in
online article popularity prediction [2].

5.5.1 Sentence2Vector
We found that the popular micro-videos are sometimes

related to the topics of the textual descriptions. This
observation propels us to conduct content analysis over
the textual descriptions of micro-videos. Considering the
short-length of descriptions, to perform content analysis,
we employed the state-of-the-art textual feature extraction
tool Sentence2Vector14, which was developed on the basis of
work embedding algorithm Word2Vector [21]. In this way,
we extracted 100-D features for video descriptions.

5.5.2 Textual Sentiment
We also analyze the sentiments over texts, which has been

proven to play an important role in popularity prediction
[1]. With the help of the Sentiment Analysis tool in
Stanford CoreNLP tools15, we assigned each micro-video a
sentiment score ranging from 0 to 4 and they correspond to
very negative, negative, neutral, positive, and very positive,
respectively.

6. EXPERIMENT
In this section, we conducted extensive experiments to

comparatively verify our model.

6.1 Experiment Settings
The remaining experiments were conducted over a cluster

of 50 servers equipped with Intel Xeon(2x) CPU E5-2620
v3 at 2.40 GHz on 64 GB RAM, 24 cores and 64-bit Linux
operating system. Regarding the deep feature extraction,
we deployed Caffe framework [13] on a server equipped with
a NVIDIA Titan Z GPU. The experimental results reported
in this paper were based on 10-fold cross-validation. In each
round of the 10-fold cross-validation, we split our dataset
into two chunks: 90% of the micro-videos were used for
training, 10% were used for testing. We report performance
in terms of normalised Mean Square Error (nMSE) [22]
between the predicted popularity and the actual popularity.
The nMSE is an estimator of the overall deviations between

14
https://github.com/klb3713/sentence2vec.

15
http://stanfordnlp.github.io/CoreNLP/.

predicted and measured values. It is defined as,

nMSE =

∑
i=1 (pi − ri)

2∑
i=1 r

2
i

, (22)

where pi is the predicted value and ri is the target value in
ground truth.

We have three key parameters as shown in Eqn.(8). The
optimal values of these parameters were carefully tuned with
the training data in each of the 10 fold. We employed
the grid search strategy to obtain the optimal parameters
between 10−5 to 102 with small but adaptive step sizes.
In particular, the step sizes were 0.00001, 0.0001, 0.001,
0.01, 0.1, 1 and 10 for the range of [0.00001,0.0001],
[0.0001,0.001], [0.001,0.01], [0.01,0.1], [0.1,1], [1,10] and
[10,100], respectively. The parameters corresponding to the
best nMSE were used to report the final results. For other
compared systems, the procedures to tune the parameters
are analogous to ensure the fair comparison. Considering
one fold as an example, we observed that our model reached
the optimal performance at λ = 1, µ = 0.01 and θ = 100.

6.2 On Model Comparison
To demonstrate the effectiveness of our proposed TMALL

model, we carried out experiments with several state-of-the-
art multi-view learning approaches:

• Early Fusion. The first baseline concatenates the
features extracted from the four modalities into
a single joint feature vector, on which traditional
machine learning models can be applied. In this work,
we adopted the widely used regression model—SVR,
and implemented it with the help of scikit-learn [23].

• Late Fusion. The second baseline first separately
predicts the popularity of micro-videos from each
modality via SVR model, and then linearly integrates
them to obtain the final results.

• regMVMT. The third baseline is the regularized
multi-view learning model [37]. This model only
regulates the relationships among different views
within the original space.

• MSNL. The fourth one is the multiple social network
learning (MSNL) model proposed in [27]. This model
takes the source confidence and source consistency into
consideration.

• MvDA. The fifth baseline is a multi-view discriminant
analysis (MvDA) model [14], which aims to learn a
single unified discriminant common space for multiple
views by jointly optimizing multiple view-specific
transforms, one for each view. The model exploits both
the intra-view and inter-view correlations.

Table 1 shows the performance comparison among
different models. From this table, we have the following
observations: 1) TMALL outperforms the Early Fusion
and Late Fusion. Regarding the Early Fusion, features
extracted from various sources may not fall into the same
semantic space. Simply appending all features actually
brings in a certain amount of noise and ambiguity. Besides,
Early Fusion may lead to the curse of dimensionality since
the final feature vector would be of very high dimension.
For the Late Fusion, the fused result however might not
be reasonably accurate due to two reasons. First, a single
modality might not be sufficiently descriptive to represent

904



Table 1: Performance comparison between our
proposed TMALL model and several state-of-the-
art baselines in terms of nMSE.

Methods nMSE p-value

Early Fusion 59.931 ± 41.09 9.91E-04
Late Fusion 8.461 ± 5.34 3.25E-03
regMVMT 1.058 ± 0.05 1.88E-03
MSNL 1.098 ± 0.13 1.42E-02
MvDA 0.982 ± 7.00E-03 9.91E-04
TMALL 0.979 ± 9.42E-03 –

the complex semantics of the videos. Separate results
would be thus suboptimal and the integration may not
result in a desired outcome. Second, it is labor-intensive
to tune the fusion weights for different modalities. Even
worse, the optimal parameters for one application cannot be
directly applied to another one. 2) TMALL achieves better
performance, as compared with regMVMT and MSNL. This
could be explained that linking different modalities via a
unified latent space is better than imposing disagreement
penalty directly over original spaces. 3) The less satisfactory
performance of MvDA indicates that it is necessary to
explore the consistency among different modalities when
building the latent space. And 4) as compared to the multi-
view learning baselines, such as regMVMT, MSNL, and
MvDA, our model stably demonstrates its advantage. This
signals that the proposed transductive models can achieve
higher performance than inductive models under the same
experimental settings. This can be explained by the fact
that TMALL leverages the knowledge of testing samples.
Moreover, we performed the paired t-test between

TMALL and each baseline on 10-fold cross validation. We
found that all the p-values are much smaller than 0.05, which
shows that the performance improvements of our proposed
model over other baselines are statistically significant.

6.3 On Modality Comparison
To verify the effectiveness of multi-modal integration,

we also conducted experiments over different modality
combinations of the four modalities. Table 2 summarizes
the multi-modal analysis and the paired t-test results. It is
obvious that the more modalities we incorporated, the better
performance we can obtain. This implies the complementary
relationships rather than mutual conflicting relationships
among the different modalities. Moreover, we found that
removing features from any of these four modalities suffers
from a decrease in performance. In a sense, this is
consensus with the old saying “two heads are better than
one”. Additionally, as the performance obtained from
different combinations are not the same, this validates that
incorporating β which controls the confidence of different
modalities is reasonable. Interestingly, we observed that the
combination without social modality obtains the worst result
which indicates that the social modality plays a pivotal role
in micro-video propagation, as compared to visual, textual
or acoustic modality. This also validates that the features
developed from social modality are much discriminative,
even though they are with low-dimensions. On the other
hand, the textual modality contributes the least among all
modalities, as the performance of our model without textual
modality still achieves good performance. This may be

Table 2: Performance comparison among different
modality combinations with respect to nMSE. We
denote T, V, A and S as textual, visual, acoustic
and social modality, respectively.

View combinations nMSE p-value

T+V+A 0.996 ± 4.20E-03 2.62E-05
T+A+S 0.982 ± 4.27E-03 2.59E-05
T+V+S 0.982 ± 4.13E-03 3.05E-04
V+A+S 0.981 ± 5.16E-03 2.16E-05

T+V+A+S 0.979 ± 9.42E-03 –

Table 3: Performance comparison among different
visual features with respect to nMSE.

Features nMSE p-value
Color Histogram 0.996 ± 6.88E-03 1.94E-04
Object Feature 0.994 ± 6.71E-03 2.47E-04
Visual Sentiment 0.994 ± 6.72E-03 2.49E-04
Aesthetic Feature 0.984 ± 6.95E-03 4.44E-01

ALL 0.979 ± 9.42E-03 –

caused by the sparse textual description, which is usually
given in one short sentence.

6.4 On Visual Feature Comparison
To further examine the discriminative visual features we

extracted, we conducted experiments over different kinds of
visual features using TMALL. We also performed significant
test to validate the advantage of combining multiple
features. Table 3 comparatively shows the performance of
TMALL in terms of different visual feature configurations.
It can be seen that the object, visual sentiment and aesthetic
features achieve similar improvement in performance, as
compared to color histogram features. This reveals that
micro-videos’ popularity is better reflected by their content,
sentiment and design, including what objects they contain,
which emotion they convey and what design standards they
follow. This is highly consistent with our oberservations
and also implies that micro-videos which aim to gain high
popularity need to be well designed and considered more
from the visual content.

6.5 Illustrative Examples
To gain the insights of the influential factors in the task

of popularity prediction of micro-videos, we comparatively
illustrate a few representative examples in Figure 4. From
this figure, we have the following observations: 1) Figure
4(a) shows three micro-video pairs. Each of the three micro-
video pairs describes the similar semantics, i.e., animals,
football game and sunset, respectively, but they were
published by different users. The publishers of the videos
in top row are much more famous than those of the bottom.
We found that the corresponding popularity of micro-videos
in the second row are much lower than those in the first
row, although they have no significant difference from the
perspective of video contents, which clearly justifies the
importance of social modality. 2) Figure 4(b) illustrates
three micro-video pairs, where each pair of micro-videos
were published by the same user. However, the micro-videos
in the first row achieve much higher popularity than those
in the second row, which demonstrates that the contents
of micro-videos also contribute to their popularity. In
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(a) Illustration of three micro-video pairs, and each pair was published by two distinct users. The publishers of the videos
in top row are much more famous than those of the bottom.

(b) Illustration of three micro-video pairs, and each pair was published by the same user. The videos in the first row are
much more acoustically comfortable, visually joyful, and aesthetically beautiful than those in the second row.

(c) Illustration of three popular micro-videos with different textual descriptions, which contains superstar names, hot events,
and detail information, respectively.

Figure 4: Comparative illustration of video examples. They respectively justify the importance of social,
acoustic as well as visual, and textual modalities. We use three key frames to represent each video.

particular, the comparisons in Figure 4(b), from left to
right, are i) the existence of ‘skillful pianolude’ compared
with ‘noisy dance music’, ii) ‘funny animals’ compared with
‘motionless dog’, and iii) ‘beautiful flowers’ compared with
‘gloomy sky’. These examples indicate the necessity of
developing acoustic features, visual sentiment and visual
aesthetic features for the task of micro-video popularity.
And 3) Figure 4(c) shows a group of micro-videos, whose
textual descriptions contain either superstar names, hot
hashtags, or informative descriptions. These micro-videos
received a lot of loops, comments, likes and reposts. These
examples thus reflect the value of textual modality.

6.6 Complexity Analysis
To theoretically analyze the computational cost of our

proposed TMALL model, we first compute the complexity
in the construction of H and g, as well as the inverse of
matrices H and G. The construction of H has the time
complexity of O(K2(N + M)). Fortunately, H keeps the
same in each iteration, and thus can be computed by offline.
The computation of g needs the time cost O(K(N +M)2).
In addition, computing the inverse of H and G has the
complexity of O(K3) and O((N +M)3) , respectively. The

computation cost of β in Eqn.(17) is O(K2). Therefore,
the speed bottleneck lies in the computation of the inverse
of G. In practice, the proposed TMALL model converges
very fast, which on average takes less than 10 iterations.
Overall, the learning process over 9, 720 micro-videos can
be accomplished within 50 seconds.

7. CONCLUSION AND FUTURE WORK
This paper presents a novel transductive multi-modal

learning method (TMALL), to predict the popularity of
micro-videos. In particular, TMALL works by learning
an optimal latent common space from multi-modalities of
the given micro-videos, in which the popularity of micro-
videos are much more distinguishable. The latent common
space is capable of unifying and preserving information
from different modalities, and it helps to alleviate the
modality limitation problem. To verify our model, we built
a benchmark dataset and extracted a rich set of popularity-
oriented features to characterize micro-videos from multiple
perspectives. By conducting extensive experiments, we
draw the following conclusions: 1) the optimal latent
common space exists and works; 2) the more modalities
we incorporate to learn the common space, the more
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discriminant it is; and 3) the features extracted to describe
the social and content influence are representative. As a side
research contribution, we have released the dataset, codes
and parameters to facilitate other researchers. In the future,
we plan to incorporate the cross-domain knowledge, such as
the hot topics on Twitter, to enhance the performance of
popularity prediction.
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