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Abstract
Community-based question answering (cQA) sites
have become important knowledge sharing plat-
forms, as massive cQA pairs are archived, but the
uneven quality of cQA pairs leaves information
seekers unsatisfied. Various efforts have been ded-
icated to predicting the quality of cQA contents.
Most of them concatenate different features into
single vectors and then feed them into regression
models. In fact, the quality of cQA pairs is influ-
enced by different views, and the agreement among
them is essential for quality assessment. Besides,
the lacking of labeled data significantly hinders
the quality prediction performance. Toward this
end, we present a transductive multi-view learning
model. It is designed to find a latent common space
by unifying and preserving information from var-
ious views, including question, answer, QA rele-
vance, asker, and answerer. Additionally, rich in-
formation in the unlabeled test cQA pairs are uti-
lized via transductive learning to enhance the rep-
resentation ability of the common space. Exten-
sive experiments on real-world datasets have well-
validated the proposed model.

1 Introduction
As compared to the traditional factoid QA systems,
community-based QA (cQA) systems are user-centered that
leverage crowdsourcing platforms to encourage users to ask
and/or answer questions, and further provide rich knowledge
to search engines. Nevertheless, the quality of cQA contents
varies largely due to users’ diverse expertise and the low-cost
posting behaviors. Low-quality cQA pairs can cause some se-
rious problems including, but not limited to, the followings:
1) They may mislead information seekers and hence impact
their search experience. 2) A large portion of storage and
computing resources are wasted on low-quality contents. In-
stead, desired information are not acquired. 3) They decrease
the stickiness of community users. Once these sites are over-
whelmed by low-quality information, users will be gradually
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Figure 1: Aspects influence the quality of cQA pairs.

unwilling to keep browsing them. To gain insights into cQA
quality, we randomly selected 100 questions and their corre-
sponding answers from a cQA site StackExchange, and in-
vited three volunteers to rate these cQA pairs on the scale
from 1 (poor) to 5 (excellent). According to our statistics, we
found that more than 45% of cQA pairs are rated as unsatis-
factory (bellow 3 on average). The study result is consistent
with what has been reported by Jeon et al. [2006]. To handle
such issues, we target at assessing the quality of cQA pairs.

In essence, great efforts have been dedicated to predict-
ing the quality of cQA contents [Shah and Pomerantz, 2010;
Dalip et al., 2013; Nie et al., 2017]. Despite their success,
most existing methods simply concatenated various features
into single vectors first and then fed them into regression
models. However, this may be suboptimal, due to: 1) Week
Capacity in Multi-view Fusion. The quality of cQA pairs
is influenced by distinct views, and each of them describes
a specific but incomplete angle. We carefully went through
aforementioned cQA pairs and found that their quality are
determined by five main factors, including question, answer,
QA relevance, asker, and answerer. Figure 1 illustrates a se-
lected example. Even the answerer is experienced and he/she
resolves the question with a well-organized answer, the cQA
pair can hardly be considered as a high-quality one, as the
asker is of less experience and the question is full of typos.
So, overlooking the agreement among these views may cause
an unfair judgement. 2) Data Deficiency. In most previous
work, only labeled cQA pairs are utilized to train the regres-
sion model. Yet, it is expensive to gather sufficient labeled
cQA pairs in practice. Instead, unlabeled cQA pairs are much
cheaper to obtain, and they also contains rich information.
However, these unlabeled cQA pairs are not fully explored.

Toward this end, we propose a Transductive Multi-view
Learning model, dubbed as TMvL, to assess the cQA pair
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quality. Specifically, multi-view learning is conducted to
solve the multi-view fusion problem. It seamlessly takes the
view agreement into account by learning a common space
shared by all views, and the desired optimal common space
maintains the original intrinsic characteristics of cQA pairs in
the original spaces. Meanwhile, transductive learning is ap-
plied to involve unlabeled cQA pairs into the common space
learning, so that the data deficiency problem could be solved.

The main contributions of this paper are three-fold. 1) As
far as we know, this is the first work applying multi-view
learning to cQA pair quality assessment, where the agree-
ment among different views of cQA pairs are fully explored.
2) We study the utility of unlabeled cQA pairs in quality as-
sessment and propose a transductive model to fully incorpo-
rate unlabeled data. 3) Comparative experiments with both
automatic and manual evaluation on our self-collected dataset
well-validate the proposed model. Additionally, we have re-
leased our codes and data to facilitate follow-on researchers1.

2 Related Work
The most related work is on answer quality prediction via
maximum entropy [Jeon et al., 2006]. Most follow-on efforts
explored different features, such as answer content [Surdeanu
et al., 2008], domain knowledge [Nie et al., 2015b], and em-
bedding features [Zhang et al., 2017]. Dalip et al. [2013]
summarized commonly used features and analyzed their ef-
fectiveness. Beyond exploring features, other novel methods
were also developed, including propagation method [Li et al.,
2015] and click model [Wei et al., 2015]. Different from the
previous efforts on exploring answer quality or question qual-
ity, we mainly focus on assessing the quality of cQA pairs.

Multi-view learning originates to learn from multiple
sources or different feature subsets by considering the agree-
ment of different views. They can be roughly categorized
into three groups: co-training, multiple kernel learning, and
subspace learning. Co-training alternately maximizes the
mutual agreement on two distinct views. Co-EM [Nigam
and Ghani, 2000], Bayesian Co-Training [Yu et al., 2011],
and Co-Regression [Zhou and Li, 2005] belong to this cate-
gory. Multiple kernel learning [Sonnenburg et al., 2005] ex-
ploits different kernels to different views, and then combines
them together to enhance the performance. Subspace learn-
ing works by finding a latent subspace shared by each view,
assuming that each input view is generated from the common
subspace. MSNL [Song et al., 2015a] , SM2L [Song et al.,
2015b], aM2L [Nie et al., 2015a], and MvDA [Kan et al.,
2016] fall into this category.

Transductive learning is quite different from the traditional
inductive learning. It leverages rich information in the test-
ing set while training the model. Various efforts have been
dedicated for unlabeled data utilization, such as Transductive
SVM [Joachims, 2001], CTA [Blum and Mitchell, 2000], and
SSR [Kim et al., 2009]. Promising performance of transduc-
tive learning has demonstrated its effectiveness of incorporat-
ing unlabeled data.

TMvL belongs to both multi-view learning and transduc-
tive learning. Different from previous efforts, it learns a latent

1http://datapublication.wixsite.com/tmvl.

subspace by minimizing the disagreement between the com-
mon space and each view by jointly considering both labeled
and unlabeled data.

3 cQA Pair Quality Assessment
3.1 Notations
We first declare some notations used in this paper. Sup-
pose there are N labeled and M unlabeled cQA pairs in the
dataset. Each pair is described by V views. Let x(v)

i ∈ RD(v)

denotes the feature vector of the i-th cQA pair in the v-th
view, whereby D(v) refers to the feature dimension. The v-th

view is represented as X(v) =
[
x
(v)
1 ,x

(v)
2 , . . . ,x

(v)
N+M

]T
∈

R(N+M)×D(v)

. Quality labels of the N cQA pairs are vec-
torized as y(l) =

[
y
(l)
1 , y

(l)
2 , . . . , y

(l)
N

]
∈ RN , where y(l)i

is the quality score for the i-th cQA pair. As to the M
unlabeled cQA pairs, we aim to assess their quality y =
[yN+1, yN+2, . . . , yN+M ] ∈ RM , where yi denotes the in-
ferred quality score of the i-th unlabeled cQA pair. Our re-
search objective is to propagate the quality scores of labeled
cQA pairs to unlabeled ones. This is a transductive learn-
ing model, in which both labeled and unlabeled cQA pairs
are used for training. In particular, information of both la-
beled and unlabeled cQA pairs are simultaneously leveraged
to learn a common space shared by multiple views. The com-

mon space is denoted as X(0) =
[
x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
N+M

]T
∈

R(N+M)×D(0)

, where x
(0)
i ∈ RD(0)

indicates the representa-
tion of the i-th cQA pair in the common space.

3.2 Proposed Model
As reported in [Song et al., 2015a], the squared loss usually
yields good performance compared with other complex ones
in the regression problem. We followed this scheme by uti-
lizing the squared loss function to measure the training error
of the labeled cQA pairs. In TMvL, the quality of cQA pairs
is assessed relied on the representation in the common space.
We thus have the empirical loss,

Γ1 =
1

2N

N∑
i=1

(
y
(l)
i −wTx

(0)
i

)2
, (1)

where w ∈ RD(0)

is our desired coefficient vector, mapping
the cQA pair representation in the common feature space to
the quality value space.

The common space is induced from V different views, and
each view conveys a specific aspect of cQA pairs. To in-
formatively and comprehensively characterize each QA pair,
the original intrinsic characteristics of different views are re-
served in the common space. The effectiveness of Laplacian
matrix has been proven in data representation and cluster-
ing [Feng et al., 2017], which captures the inherent relat-
edness among data points, following the traditional spectral
graph embedding theory. We thus turn to penalize the dis-
agreement of normalized Laplacian matrix between the com-
mon space and each view, to ensure that the quality character-
istics of different views can be preserved as much as possible.
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It is formulated as,

Γ2 =
1

2V

V∑
v=1

∥∥∥L(0) − L(v)
∥∥∥2
F
, (2)

where L(k) denotes the normalized Laplacian matrix, and it
is calculated as,

L(k) = I−D(k)−
1
2S(k)D(k)−

1
2 , (3)

where I ∈ R(N+M)×(N+M) is an identity matrix; S(k) and
D(k) ∈ R(N+M)×(N+M) denote the affinity matrix and the
degree matrix, respectively. In this paper, we adopt cosine
similarity to measure S(k). To decrease the complexity of

the formula, we normalize x
(k)
n via enforcing

∥∥∥x(k)
i

∥∥∥2
F

= 1.

In this way, the (m,n)-th element of S(k) is calculated as

S
(k)
m,n = x

(k)
m

T
x
(k)
n . Inspired by [Liu et al., 2013], we set

S
(k)
n,n = 0 to eliminate the self-loop problem. The degree

matrix D(k) is a diagonal matrix, and the (m,m)-th element
D

(k)
m,m is calculated as,

D(k)
m,m =

N+M∑
n=1

S(k)
m,n. (4)

It is notable that the common space learning follows the
main idea of transductive learning. Particularly, in the Lapla-
cian matrix, each data point is represented by its relations
with the others, including both labeled and unlabeled ones.
Therefore, both labeled and unlabeled cQA pairs are equally
utilized. This is why we claim that the common space X(0)

is capable of harvesting unlabeled cQA pairs to enforce its
representation ability.

To incorporate the learned common space into the quality
assessment task and strengthen the prediction performance,
we co-regularize the empirical loss together with Eqn.(2). We
then reach the final objective function O(w,X(0)),

1

2N

N∑
i=1

(
y
(l)
i −wTx

(0)
i

)2
+

µ

2V

V∑
v=1

∥∥∥L(0) − L(v)
∥∥∥2
F

+
λ

2
‖w‖2F ,

s.t.
∥∥∥x(0)

i

∥∥∥2
F

= 1, i = 1, 2, . . . , N +M, (5)

where µ and λ are both non-negative regularization parame-
ters. Specifically, µ penalizes the disagreement between the
common space and each view, and λ controls the complexity.

3.3 Optimization
We adopt the alternating strategy to minimize our objective
function. We first fix w and optimizeO w.r.t X(0) with gradi-
ent descent. It is worth noting that the matrix X(0) is normal-

ized after updating each parameter to ensure
∥∥∥x(0)

i

∥∥∥2
F

= 1.
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Figure 2: Results of volunteer ratings.

As to w, we first fix X(0), set ∂O(w,X(0))
w to zero, and we

then have the closed-form solution,

w =

(
1

N
X(0)TX(0) + λI

)−1(
1

N
X(0)Ty(l)

)
, (6)

where X(0) =
[
x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
N

]T
is the representation

of labeled samples in the common space, and I is an N ×N
identity matrix.

4 Experiments
4.1 Dataset Construction
We crawled data from two compact subsites of StackEx-
change, i.e., “English” and “Game”. We collected 26, 752
questions, their corresponding 92, 397 answers, and 28, 271
users (askers and answerers) from “English” subsite. Mean-
while, we gathered 28, 023 questions, their corresponding
59, 423 answers, and 24, 079 users from “Game” subsite.

We utilized user vote information on StackExchange to
construct quality labels. For a given cQA pair, the quality
label considers both its answer quality sa and question qual-
ity sq . We employed the normalized answer vote to represent
sa, which is calculated as sa = va

maxa({vq
a}) , where va is the

number of votes received by the answer a, and maxa({vqa})
indicates the largest number of votes among the answers un-
der the question q. We next utilized the number of votes vq
received by question q to infer sq . The quality of question is
normalized as sq =

vq

maxq({vq}) . We then used the average
score of sa and sq to represent the quality of a cQA pair.

To justify the rationality of the auto-generated labels, we
randomly selected 50 popular questions from “English” site
with more than 5,000 viewers and 50 unpopular questions
with less than 500 views. Based on these criteria, 456 and
111 cQA pairs were involved, respectively. Three volunteers
were invited to annotate these cQA pairs on the scales from
1 (poor) to 5 (excellent) according to pre-determined guide-
lines. We calculated the inter-rater agreement among volun-
teers, and the pair-wise Kappa coefficients are all larger than
0.6. This demonstrates the significant alignment among them.
The average score is hence regarded as the rating of the cQA
pair. We observed a similar rating distribution between pop-
ular and unpopular questions, as shown in Figure 2(a), which
reflects that the question popularity has less influence on the
real quality of cQA pairs. Figure 2(b) and Figure 2(c) plot
relations between volunteer ratings and auto-generated qual-
ity labels on popular and unpopular questions, respectively.
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Auto-Evaluation Manual Evaluation

Dataset # Labeled # Unlabeled cQA Pairs # Labeled # Unlabeled cQA Pairs
cQA Pairs Training Only Training & Testing cQA Pairs Training Only Training & Testing

English 3, 764 0 940 4, 704 900 100
Game 2, 435 0 608 3, 043 900 100

Table 1: Dataset description w.r.t auto-evaluation and manual evaluation.

We found that the quality of popular cQA pairs can be better
simulated, where the Pearson’s correlation is 0.81, but it does
not perform well on unpopular questions, where the Pearson’s
correlation is only 0.26. We hence selected the top 5% ques-
tions with the largest number of views to automatically con-
struct quality labels. In total, we obtained 4, 704 and 3, 043
labeled cQA pairs from these two datasets, respectively.

4.2 Evaluation Metrics
In order to comprehensively justify our TMvL model, we
evaluated it in two different ways, i.e., Auto-Evaluation and
Manual Evaluation.

In auto-evaluation, we utilized the automatically generated
labels to evaluate the performance. We randomly selected
20% cQA pairs as unlabeled samples as well as testing sam-
ples. Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE) [Cao et al., 2017] were used as metrics.

Since auto-evaluation is fit for popular questions only, we
hence manually rated a number of cQA pairs, including both
popular and unpopular questions. In manual evaluation, the
aforementioned 4, 704 and 3, 043 automatically labeled cQA
pairs were all treated as labeled data, and we randomly se-
lected 1, 000 cQA pairs from each subsite as unlabeled ones.
It is worth noting that there is no overlap between the la-
beled and unlabeled cQA pairs. From these unlabeled cQA
pairs, we further randomly selected 100 cQA pairs and in-
vited three volunteers to annotate their quality scores from 1
(poor) to 5 (excellent). The pair-wise Kappa coefficients are
all larger than 0.6, so the average scores of the three volun-
teer ratings were used as the ground truth. Since volunteer
ratings are discrete values between 1 and 5, while the pre-
dicted scores are continuous between 0 and 1, Pearson’s Cor-
relation (Corr.) [Shah and Pomerantz, 2010] are utilized.

Detailed description of the data used in these two evalua-
tion methods are displayed in Table ??.

4.3 Feature Extraction
We intend to comprehensively assess the quality of cQA pairs
from five distinct views: question, answer, cQA relevance,
asker, and answerer. To accomplish this, we extracted a rich
set of quality-oriented features from each view. It should be
noted that the purpose of this study is not to explore the dis-
crimination of features, so all features we used in this pa-
per have been demonstrated effective in prior work [Li et al.,
2012; Surdeanu et al., 2008; Dalip et al., 2013].

We next describe features in each view. 1) Question View.
We extracted three kinds of features to characterize the ques-
tion quality, i.e., User Generated Content (UGC) features,
linguistic features, and embedding features. The number of
tags, answers, user favourites, and the question age belong
to UGC features. Linguistic features include the number
of words, non-stop words, and sentences, the average and

the maximum length sentences, the percentage of punctua-
tion, pronouns, conjunctions, prepositions, spaces, as well as
sentences starting with pronouns, articles, conjunctions, or
prepositions. We also extracted a 50-dimensional sentence
embedding with Para2Vec [Le and Mikolov, 2014]. 2) An-
swer View. Similar to question view, we extracted these three
kinds of features. The UGC features contain the number of
comments and editors. As to the linguistic features, all that
described in the question view were also applicable. A 50-
dimensional embedding feature was also extracted. 3) QA
Relevance View. We extracted BM25, cosine similarity, the
number of common words and common sequences. These
features describe the QA relevance. Besides, the number of
new adjectives, new nouns, and new verbs in answers, as well
as the ratio of answer length to question length are extracted.
They verify the linguistic difference. The time span between
question and answer posting time are also extracted. 4) Asker
View and Answerer View. We treated askers and answerers
as two different views, but they share the same features space.
We extracted features based on user achievements, such as the
number of badges, reputations, and flags. Users’ behaviour
preference signals their attitude. We hence extracted the num-
ber of questions asked, answered, edited, and votes casted.

4.4 Baselines
We compared TMvL with the following baselines: 1)
LR [Shah and Pomerantz, 2010]. This is a single-view
method. We concatenated all features extracted from the five
views, and then directly fed them into a logistic regression
model. 2) Comp. [Liu et al., 2011]. We trained five logis-
tic regression models on five views separately, and fed these
regression results into a final regressor to predict the qual-
ity score. This is a single-view method, as view agreement
is ignored. 3) SVR [Drucker et al., 1996]. Support Vec-
tor Regression is another single-view method, which con-
catenates features from different views into a single feature
vector. We chose the learning formulation with the kernel
of radial-basis function, as it outperforms other kernels in
our experiments. 4) MSNL [Song et al., 2015a]. Multiple
Social Network Learning is a multi-view learning method,
which takes both view agreement and view confidence into
account. 5) MvDA+SVR [Kan et al., 2016]. Multi-view Dis-
criminant Analysis is another multi-view learning method. It
aims to learn a single unified discriminant common space
from multiple views by jointly optimizing multiple view-
specific transfor-ms. We then fed feature representations of
five distinct views in the common space into a SVR model to
make further prediction. 6) SSR [Kim et al., 2009]. Semi-
Supervised Regression is a transductive learning method. It
uses the information of unlabeled data to construct normal co-
ordinates around each unlabeled point, and the normal coordi-
nates are then employed to estimate the Hessian regularizer.
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Methods English Dataset Game Dataset
MAE (Auto) RMSE (Auto) Corr. (Manual) p-value MAE (Auto) RMSE (Auto) Corr. (Manual) p-value

LR 0.1008 0.1343 0.5882 5e-7 0.1212 0.1552 0.6879 2e-7
Comp. 0.0999 0.1335 0.6010 7e-7 0.1207 0.1510 0.7423 1e-7
SVR 0.0957 0.1272 0.6218 1e-6 0.1155 0.1473 0.7419 9e-6

MSNL 0.0917 0.1250 0.7116 3e-4 0.1160 0.1445 0.7700 2e-3
MvDA+SVR 0.0928 0.1249 0.7227 7e-7 0.1150 0.1444 0.7900 6e-4

SSR 0.0931 0.1263 0.6944 4e-6 0.1153 0.1463 0.7504 5e-4
TMvL sep 0.0923 0.1231 0.7668 3e-4 0.1145 0.1440 0.8081 3e-4

TMvL 0.0885 0.1204 0.7843 - - 0.1122 0.1415 0.8263 - -

Table 2: Performance comparison between our model and baselines w.r.t 20% unlabeled data.
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(c) MAE on Game Dataset.
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(d) RMSE on Game Dataset.
Figure 3: Results of auto-evaluation by varying the portion of unlabeled cQA pairs on “English” and “Game” datasets, respectively.

7) TMvL sep. This baseline is the variant of our proposed
model by optimizing Γ1 and Γ2 separately. It first learns rep-
resentations of cQA pairs with Γ2. Then the representations
of labeled ones are then fed into Γ1 to train the regression
model. This method belongs to transductive learning.

4.5 Overall Performance Comparison
The overall performance comparison is summarized in Ta-
ble 2. We have the following observations: 1) As compared
to single-view methods, i.e., LR, Comp., and SVR, multi-
view learning methods, i.e., MSNL, MvDA, TMvL sep, and
TMvL, perform better on both MAE and RMSE. Because
the latter explores the relatedness among views to strengthen
their combination. 2) Transductive learning methods, i.e.,
SSR, TMvL sep, and TMvL surpass the inductive ones, i.e.,
LR, Comp., and SVR. The main reason is that transductive
learning-based approaches are capable of harvesting informa-
tion from the unlabeled data. 3) Regarding the comparison
among multi-view learning methods, TMvL and TMVL sep
outperform others. This is because that unlabeled cQA
pairs are utilized to learn the common space by TMvL and
TMvL sep. This indicates that the use of unlabeled data is
helpful to learn a reliable common space. 4) When comparing
three transductive learning methods, we observed that TMvL
and TMVL sep perform better. Even though both labeled
and unlabeled cQA pairs were used, TMvL and TMVL sep
separately considered different views and modeled the view
agreement. This justifies that TMvL and TMVL sep can
well preserve the characteristics of different views. 5) Com-
pared to TMvL sep, TMvL co-regularizes both Γ1 and Γ2,
so the common space learned by TMvL is guided by the qual-
ity label. The outstanding performance of TMvL demon-
strates that under the supervision of labeled cQA pairs, the
common space can better assess the quality of cQA pairs. 6)
No matter in auto-evaluation or manual evaluation, we got
quite similar results, which means that for unpopular ques-
tions, our auto-generated quality labels are reliable enough
to guide the training procedure. 7) Results of pair-wise sig-
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(a) English Dataset
# Unlabeled QA Pairs
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(b) Game Dataset
Figure 4: Transductive learning analysis with manual evaluation.

nificance tests on RMSE are much smaller than 0.05, which
indicates that the performance improvement is significant.

4.6 Transductive Learning Analysis
To justify the impact of incorporating unlabeled data by a
transductive model, we conducted experiments by varying the
number of unlabeled cQA pairs.

In auto-evaluation, we gradually increased the portion of
unlabeled cQA pairs from 20% to 80%; the portion of labeled
pairs therefore decreased accordingly. As shown in Figure 3,
the performance of all methods gradually drops. Moreover,
the performance of transductive learning methods, i.e., SSR,
TMvL sep and TMvL remain relatively stable as compared
to others. This shows that transductive models can better al-
leviate the data deficiency problem.

We then performed manual evaluation to further analyze
the influence of unlabeled data. We kept the labeled cQA
pairs and gradually increased unlabeled ones from 100 to
1, 000. Only transductive learning methods were compared
here because the change of unlabeled data has no effect on
inductive learning methods. The result is shown in Figure 4.
We have the following observations: 1) The performance of
all methods is enhanced by increasing the number of unla-
beled cQA pairs. This demonstrates that transductive learning
methods are able to learn a more reliable common space from
unlabeled data. 2) Among these three methods, TMvL con-
sistently performs the best. This is because view agreement
are considered in the common space by TMvL.
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Figure 5: Performance comparison on unpopular questions with manual evaluation and some selected examples.

Methods English Dataset Game Dataset
MAE RMSE Corr. MAE RMSE Corr.

Answer 0.1136 0.1484 0.5089 0.1467 0.1821 0.4793
+QA 0.1090 0.1430 0.5490 0.1319 0.1660 0.6069
+Answerer 0.1002 0.1363 0.6683 0.1248 0.1574 0.6759
+Question 0.0927 0.1259 0.7573 0.1156 0.1461 0.7887
+Asker 0.0885 0.1204 0.7843 0.1122 0.1415 0.8263

Table 3: Incremental multi-view integration.

4.7 Evaluation on Unpopular Questions
Our quality labels were constructed with popular questions,
we hence manually evaluate the performance on both pop-
ular and unpopular questions to demonstrate its applicabil-
ity. The cQA pairs from those 50 popular and 50 unpopular
questions annotated in section 4.1 are used as unlabeled sam-
ples, and 4, 704 auto-labeled pairs are labeled ones. As the
result shown in Figure 5(a), we found the followings: 1) As
we mentioned in section 4.1, the Pearson’s Correlation be-
tween our generated quality labels and volunteer ratings on
unpopular questions is 0.26. And we found that all these
comparative methods achieve higher performance. In addi-
tion, the performance on labeled and unlabeled questions is
quite similar. This demonstrates that the constructed quality
labels with popular questions are reasonable to supervise the
model training. 2) TMvL stably outperformed other base-
lines in both two settings. It demonstrates that the proposed
model is applicable to both popular and unpopular questions.

Figure 5(b) illustrates two examples and the quality assess-
ment results of volunteers and all methods. The quality of the
first one is bad, and volunteer rating is 2.33 on average, much
lower than 3. Similarly, TMvL assesses it a low score of 0.42.
While other methods tend to consider it as a high-quality one.
The second example is of high quality. Even though all meth-
ods gave it high scores, the score rated by TMvL is much
closer to human judgements.

4.8 Incremental Analysis of View Impact
To demonstrate the effectiveness of these five views in assess-
ing cQA pair quality, we incrementally fed them into TMvL.
Results are displayed in Table 3. Both auto-evaluation and
manual evaluation were conducted, and they led to the same
conclusion. It is observed that more views lead to better
performance, and the best performance is obtained when all
these five views are integrated. This reveals that every view
contains useful information and can be effectively encoded in
the common space by TMvL.
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Figure 6: Visualization of the similarity matrix.

4.9 Common Space Visualization
To demonstrate the rationale of the common space learned
by TMvL, we visualized similarities among cQA pairs in the
common space. All cQA pairs were first sorted according to
their label values, so that cQA pairs of high-quality and low-
quality can be separated. We then calculated the similarity
matrix, where each entry denotes the cosine similarity of two
given cQA pairs in the common space X(0). As the result
shown in Figure 6(a), almost all cQA pairs are closer to the
ones with similar quality. They can hence be roughly grouped
into two clusters, i.e., high-quality ones and low-quality ones.
After analyzing the distribution of label values, we found that
these cQA pairs can also be divided into two categories, as
shown in Figure 6(b). These two separations statically match,
and the dot lines in these two sub-figures illustrate the same
separation. This demonstrates that with the supervision of
labels, the common space is more reliable and separable to
assess the cQA pair quality.

5 Conclusion
This paper presents a novel transductive multi-view learning
model to assess cQA pair quality. It learns an optimal com-
mon space by jointly leveraging both labeled and unlabeled
training samples of the given cQA pairs with multi-facets.
The common space enables each view to maintain the intrin-
sic properties. Comparative experiments with both automatic
and manual evaluation on real-world datasets have demon-
strated the promising performance of our model.
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