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Abstract

Scene Graph Generation, which generally follows a
regular encoder-decoder pipeline, aims to first encode the
visual contents within the given image and then parse them
into a compact summary graph. Existing SGG approaches
generally not only neglect the insufficient modality fusion
between vision and language, but also fail to provide infor-
mative predicates due to the biased relationship predictions,
leading SGG far from practical. Towards this end, we first
present a novel Stacked Hybrid-Attention network, which
facilitates the intra-modal refinement as well as the inter-
modal interaction, to serve as the encoder. We then devise
an innovative Group Collaborative Learning strategy to
optimize the decoder. Particularly, based on the observation
that the recognition capability of one classifier is limited
towards an extremely unbalanced dataset, we first deploy
a group of classifiers that are expert in distinguishing
different subsets of classes, and then cooperatively optimize
them from two aspects to promote the unbiased SGG. Ex-
periments conducted on VG and GQA datasets demonstrate
that, we not only establish a new state-of-the-art in the
unbiased metric, but also nearly double the performance
compared with two baselines. Our code is available at
hitps://github.com/dongxingning/SHA-GCL-for-SGG.

1. Introduction

Scene Graph Generation (SGG) [41] targets at orga-
nizing all the objects and their pairwise relationships into
a compact summary graph. As an intermediate visual
understanding task, SGG could benefit various vision-and-
language tasks, including cross-modal retrieval [0, 11, 28],
image captioning [2, 10,51], and visual question answering
[12,32,48]. However, SGQG is still far from satisfactory for
practical applications due to the insufficient modality fusion
and the biased relationship predictions.
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Figure 1. Two intentions to promote the unbiased SGG. (1)
For the insufficient modality fusion, we aim to enhance both the
intra-modal refinement and the inter-modal interaction (see the
top-right corner of the figure). And (2) we split the extremely
unbalanced dataset into a set of relatively balanced groups, based
on which we configure the classification space for all the newly-
added classifiers (see the rest part of the figure).

Though it is manifestly proved that incorporating seman-
tic cues (language priors of object class names) into visual
contents (object proposals) could significantly improve the
generation capability [ 18,2 1], most of the recent approaches
[17,26,30,31,42,43,46,47] simply fuse these visual and
semantic features by summing up directly or concatenation,
which limits the model to further infer their interaction
information. To address this under-explored insufficient
modality fusion between visual contents and semantic cues,
we aim to strengthen the encoder via jointly exploring the
intra-modal refinement and the inter-modal interaction, as
illustrated in Figure 1. To implement this intention, we
first design the Self-Attention (SA) unit and the Cross-
Attention (CA) unit to capture the intra-modal and inter-
modal information, respectively. We then organize these
two units into a Hybrid-Attention (HA) layer, and stack
several HA layers to build the encoder. The proposed
Stacked Hybrid-Attention (SHA) network could adequately
explore the multi-modal interaction, thus improving the
relationship prediction performance.
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The other prominent issue faced by existing SGG meth-
ods is the biased relationship predictions due to the long-
tailed data distribution. Since only a few head predicates
(e.g., on, has) possess massive and various instances, they
would dominate the training procedure and lead the output
scene graphs with few informative tail predicates (e.g.,
riding, watching), which could hardly support a wide range
of downstream tasks. Though various debiasing approaches
[4,29,37] have been proposed, they are vulnerable to over-
fitting the tail classes and sacrificing much on the head ones,
leading to the other extreme. In a sense, we conjecture that
this dilemma may root in the fact that a naive SGG model,
regardless of the conventional or debiasing one, could only
differentiate a limited range of predicates whose amount of
training instances are relatively equal.

Intuitively, since a single classifier struggles in achieving
a reasonable prediction trade-off, we can divide the biased
predicate classes into several balanced subsets, then intro-
duce more classifiers to conquer each of them, and ulti-
mately leverage these classifiers to cooperatively address
this challenge. To fulfill this “divide-conquer-cooperate”
intuition, we propose the Group Collaborative Learning
(GCL) strategy, where we 1) first divide: As a single classi-
fier is adequate to differentiate the classes within a balanced
dataset, we first divide all the predicates into a set of rela-
tively balanced groups according to their amount of training
instances, as illustrated in Figure 1. 2) Then conquer: We
then borrow the idea from the class-incremental learning
[14] to force all the classifiers to follow a continuously
growing classification space, i.e., each classifier would
extend the previous classification space by incorporating
a newly-added group of predicates. Besides, we devise
the Median Re-Sampling strategy to provide each classifier
with a relatively balanced training set. Based on this group-
incremental configuration, these nested classifiers could
fairly treat the predicates within their classification space,
thus they would be more likely to learn the discriminating
representations, especially towards the newly-added group.
3) Ultimately cooperate: We further leverage these clas-
sifiers to cooperatively enhance the unbiased relationship
predictions from two aspects. First, we propose the Parallel
Classifier Optimization (PCO) to jointly optimize all the
classifiers. This can be seen as a “weak constraint”, since
we expect that gathering all the gradients could promote the
recognition capability of each classifier. Second, we devise
the Collaborative Knowledge Distillation (CKD) to ensure
that the discriminating capability learned previously could
be well translated to the subsequent classifiers. This can be
seen as a “strong constraint”, since we force each classifier
to mimic the prediction behavior from its predecessors. By
employing these two constraints, we effectively mitigate
the overwhelming punishments to the tail classes as well
as compensate for the under-fitting on the head ones.

The contributions of our work are three-folds:

* We present a novel Stacked Hybrid Attention network
to strengthen the encoder in SGG, which addresses the
under-explored insufficient modality fusion problem.

* We design the Group Collaborative Learning strategy
to optimize the decoder in SGG. Particularly, we de-
ploy a group of classifiers and cooperatively optimize
them from two aspects, thus effectively addressing the
intractable biased relationship prediction problem.

» Experiments conducted on VG and GQA dataset in-
dicate that, we not only establish a new state-of-the-
art in the unbiased metric, but also nearly double
the performance compared with two typical baselines
when employing our model-agnostic GCL.

2. Related Work

Scene Graph Generation. SGG provides an efficient way
for scene understanding by decoding the visual relation-
ships into a summary graph. Early approaches [5, 18,19,21]
were mainly dedicated to incorporating more features from
various modalities, but they neglected the rich visual con-
text, leading to sub-optimal performance. In order to tackle
such deficiency, later approaches employed more powerful
feature refinement modules to encode the rich contextual
information, such as message passing strategy [17,40], se-
quential LSTMs [31,47], graph neural networks [3,46], and
self-attention networks [20,26]. Though the performance is
improved in the regular metrics, the relations they predicted
are often trivial and less informative due to the biased
training data, which could hardly support the downstream
vision-and-language tasks. Therefore, various approaches
[4,29,37] have been proposed to tackle the biased relation-
ship predictions, including employing debiasing strategies
like re-sampling [!7] or re-weighting [42], disentangling
unbiased representations from the biased [30], and utilizing
the tree structure to filter the irrelevant predicates [43].
However, these approaches are vulnerable to over-fitting
on the tail classes with much sacrifice on the head ones.
Based on the observation that a single classifier could
hardly differentiate all the classes within a biased dataset,
and inspired by the “divide-conquer-cooperate” intuition,
we propose the Group Collaborative Learning strategy
to guide the training of the decoder. In this way, we
not only significantly improve the prediction performance
towards the tail classes, but also effectively preserve the
discriminating capability learned by the head ones, thus
achieving a reasonable prediction trade-off.

Cross-attention Models. Research towards improving
multi-modal fusion [35, 36] and building cross-attention
models [38, 50] have been attracting increasing interest in
various vision-and-language tasks. For example, Yu et al.
[44] proposed the deep Modular Co-Attention Network to
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Figure 2. The framework of the common pipeline in SGG, which includes five key components. Notably, we improve three key components
marked in red in the figure. Specifically, we propose the Stacked Hybrid-Attention network to enhance the object encoder and the relation
encoder, and we also devise the Group Collaborative Learning strategy to guide the training of the relation decoder.

fully model the interaction between question words and
image regions in VQA, and Lu et al. [22] proposed ViL-
BERT to extend BERT architecture for jointly pre-training
images and texts. Nevertheless, few of the approaches
in SGG dedicate to addressing the insufficient modality
fusion between object proposals and their corresponding
class names. Therefore, we propose the Stacked Hybrid-
Attention (SHA) network to facilitate both the intra-modal
refinement and the inter-modal interaction.

Knowledge Distillation. Knowledge distillation [9, 13,23]
aims to distill the knowledge from a larger deep network
into a small one, which is widely employed in various
tasks, including model compression [ |,34], label smoothing
[27, 45], and data augmentation [7, 8]. Note that the
conventional knowledge distillation approaches generally
follow a teacher-student pipeline. These two networks are
optimized in different time steps as the teacher network is
usually available beforehand. Different from this model-to-
model paradigm, after adding several classifiers, we allow
the previous classifiers to generate the outputs as soft labels
to constrain the training of the subsequent, thus establishing
a layer-to-layer “knowledge transfer”.

3. Methodology
3.1. Problem Formulation

SGG aims to generate a summary graph G that highly
generalizes the contents of a given image I. Towards
this end, we first detect all the objects within the image
I, denoted as O = {o0;}}¥,. Then for each object pair
(0i, 05), we predict its predicate p;—,;. Ultimately, we
organize all these predictions in the form of triplets to
construct the scene graph, which can be formulated as G =
{(04,pi—j,05)|0i,0; € O,p;,; € P}, where P stands for
the set of all the possible predicates.

3.2. Overall Framework

As illustrated in Figure 2, our framework is based on
the common pipeline followed by typical SGG approaches
[31,42,43,47], which is a regular encoder-decoder structure.

Proposal Network is actually a pre-trained object de-
tector. Given an image I, it generates a set of object
predictions O = {o;},. For each object o;, it provides
a visual feature v;, a spatial feature s; of the bounding box
coordinates, and an initial object label prediction /;.

Object Encoder aims to obtain the refined object feature
x; for further predictions, which is calculated as:

x; = Enc® ([v;, FC(s;)], Emb(l;)), (1)

where Enc®(-) represents the object encoder, which can
be any feature refinement modules (e.g., BILSTMs [47]
and GNNs [3]), [,-,] denotes the concatenation operation,
FC(-) represents a fully-connected layer, and Emb(-)
refers to a pre-trained language model to acquire the seman-
tic feature of 0; based on its initial object label prediction ;.

Object Decoder aims to obtain the final object label
prediction [} based on the refined object feature x;, which is
calculated as:

I} = argmax(Softmax(Dec®™ (x;))), )

where Dec®% (-) represents the object decoder, which is a
single fully-connected layer.

Relation Encoder works on obtaining the final object
feature x for predicate predictions, which is calculated as:

X, = Enc"®([vi, x;], Emb(1})), )

where Enc"®(-) represents the relation encoder, which

shares the same architecture with the object encoder.
Relation Decoder is responsible for predicting the pred-

icate label p;_, ; based on the final object features of subject
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Figure 3. One single Stacked Hybrid-Attention (SHA) layer is
composed of two types of attention units, i.e., Self-Attention (SA)
unit to facilitate the intra-modal refinement and Cross-Attention
(CA) unit to promote the inter-modal interaction.

o0; and object o;, which is calculated as:
Dimsj = argmaX(SoftmaX(Dechl( ;», u;;)), @)

where Dec"®(-) represents the relation decoder. We also
follow [47] to employ the union feature u;; of the object
pair (05, 0;) to enhance the predicate predictions.

It is worth noting that we improve three key components
marked in red in Figure 2 to promote the unbiased SGG.
Specifically, for the object encoder and the relation encoder,
we propose the Stacked Hybrid-Attention (SHA) network to
alleviate the insufficient modality fusion problem. Regard-
ing the relation decoder, we devise the Group Collaborative
Learning (GCL) strategy to address the intractable biased
relationship prediction problem.

3.3. Encoder: Stacked Hybrid-Attention

Beyond understanding the visual contents (object pro-
posals) of a given image, the semantic cues (refer to the
class names in SGG) are also indispensable for robust rela-
tionship predictions. Unfortunately, most of the approaches
in SGG simply fuse these two modal features by summing
up directly or concatenation, which may be insufficient to
mine the underlying inter-modal interaction, thus resulting
in sub-optimal performance. To address this deficiency,
we propose the Stacked Hybrid Attention (SHA) network,
which is composed of several SHA layers. Each SHA layer
contains two parallel Hybrid-Attention (HA) cells, and each
HA cell is a composition of two types of attention units,
i.e., the Self-Attention (SA) unit to facilitate the intra-modal
refinement, and the Cross-Attention (CA) unit to model the
inter-modal interaction. As shown in Figure 3, both the
SA unit and CA unit are built upon a multi-head attention
module and a feed-forward module based on the attention
mechanism [33]. The difference between SA and CA is
whether the input features belong to the same modality.

Ultimately, we build our SHA network by cascading L
SHA layers in sequential order. For the [-th SHA layer, the
feature propagation process can be formulated as:

{X(” = SAXED) 4 cAXI-D, Y U=D)y,
&)

v — SA(Y(Z—l)) + CA(Y(Z—1)7X(Z—1))7

where SA(-) and C'A(-) denote the self-attention and cross-
attention computation, respectively. For the first SHA layer,
we set its input feature X© = X and YO = Y, where
X and Y denote the original visual feature and semantic
feature, respectively. After obtaining the final visual feature
X (L) and semantic feature Y (%) generated by the last SHA
layer, we sum them up to get the refined output, which
contains rich multi-modal interaction information.

3.4. Decoder: Group Collaborative Learning

As aforementioned, when facing an extremely unbal-
anced dataset, a naive SGG model could hardly achieve
a satisfactory prediction performance on all the predicate
classes. Towards this end, we aim to deploy several classi-
fiers which are expert in distinguishing different subsets of
predicates, and organize these classifiers to cooperatively
address the biased relationship predictions. Based on
this “divide-conquer-cooperate” intention, we propose the
Group Collaborative Learning (GCL) strategy. As shown in
Figure 4, GCL contains five key steps as follows:

Predicate Class Grouping aims to split the unbalanced
dataset into several relatively balanced groups, and then
configure the classification space for all the classifiers.
Based on the observation that the recognition capability
would suffer from the biased data distribution, we aim
to provide each classifier with a relatively balanced train-
ing set, thus it could adequately learn the discriminating
representations towards a subset of predicates. Therefore,
We first sort the predicate classes by their amount of
training instances in descending order, obtaining a sorted
set Poy = {pi}},. We then divide P, into K mutually
exclusive groups {Pk}k:1 according to the pre-defined
threshold . The workflow is summarized in Algorithm 1,
where Count(p;) denotes the amount of training instances
towards the predicate p;. Line 3 in Algorithm 1 ensures
that, for each group Py, the maximal amount of training
instances will be no more than g times of the minimal
amount, thus the predicates in Py share a relatively equal
amount.

Algorithm 1: Predicate Class Grouping.

Input: A sorted predicate set Poy = {pi} M,
Output: K mutually exclusive groups {P;}5_,

1 Seteur =1,k =1,and P; = {};

2 fori < 1to M do

3 if Count(peur) > p* Count(p;) then
4 cur =1;

5 k=k+1,

6 Set P, = {};

7 end

8 | Pr="PrLU{pi}

9 end
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Figure 4. Illustration of the proposed Group Collaborative Learning (GCL) strategy, which includes five key steps. It is worth noting that
we design two optimization mechanisms, namely Parallel Classifier Optimization (PCO) and Collaborative Knowledge Distillation (CKD),

to jointly guide the training of the relation decoder.

We then borrow the idea from the class-incremental
learning [14], and deploy a set of classifiers {C } 2, which
follow a continuously growing classification space. Except
for the first classifier C;, other classifiers should recognize
the predicate classes from both previous and current groups,
i.e., the classification space in Cy, is P}, = P1UPU- - -UPy.
Note that we only choose the last classifier Cx to obtain the
final predicate predictions in the evaluation stage.

Balanced Sample Preparation aims to achieve several
balanced training sets provided for further joint optimiza-
tion by re-sampling the instances. For each classifier Cy, that
incorporates a newly-added group P, to extend the previous
classification space P;,_, as P;, = P U P;_,, we expect
it could adequately learn the discriminating representations
towards the predicates, particularly within the newly-added
group Pj. Therefore, for the predicates in the group Py,
we should retain all of its training instances to facilitate
the convergence. And for the predicates in the previous
classification space Pj,_,, since they have more samples in
the original dataset, we should under-sample their training
instances to avoid biased predictions.

To implement this intention, we propose the Median Re-
Sampling strategy to perform the re-sampling operation.
For each classification space 731’« we first calculate the
median amount Med(P;,) over all the classes within ;.
For example, if Pj is sorted in descending order and
contains 9 predicate classes, the median amount Med(P},)
is equal to Count(ps). Then for each predicate class p¥ in
P;.. we calculate the sampling rate #¥ as follows:

Med(P;,) . ,
—== if Med(P},) < Count(p;),
o = ¢ Count(p;) ' cd(Pt) ount(pi) (6)

1.0, if Med(Py) > Count(p;).

By employing the above strategy, each classifier would
be expert in distinguishing the predicates, particularly in the
newly-added group. For example, since we would under-
sample the instances in Group 3 for training the 4" and 5"
classifiers, the 3'4 classifier is more likely to achieve a better
performance in distinguishing the predicates in Group 3, as
we retain all the samples of this group to let the 3™ classifier
adequately learn the discriminating representations.

Class Probability Prediction aims to parse the sampled
instances into the class probability logits for further loss
computation and model optimization. For an object pair
(0s,0;) chosen by the Median Re-Sampling strategy, after
obtaining the subject feature x;, the object feature X}, and
their union feature u,;, the class probability prediction wz’-“j
generated by the classifier Cy, is calculated as follows:

ij = Softmax(FC([x}, x}]) ® w;), 7

where ® denotes the element-wise product.

Parallel Classifier Optimization aims to regularize the
final classifier Cx by jointly optimizing all the classifiers.
In the training stage, the parameters of all the K predicate
classifiers would be optimized simultaneously, where the
objective function can be defined as:

Ko
Lpco = Zm Z
k=1

(0i,05)€Dy

‘CCE(yijvwfj)v (8)

where Dj, denotes the set of the object pairs chosen by the
Median Re-Sampling strategy, | - | denotes the length of the
given set, y;; denotes the ground-truth predicate label of the
object pair (0;,0;), and Log(-) is a regular Cross-Entropy
cost function.

The Parallel Classifier Optimization can be seen as a
“weak constraint” for Group Collaborative Learning, since
we expect that gathering gradients from all the classifiers
would facilitate the convergence of the final classifier Cx .

Collaborative Knowledge Distillation aims to establish
a knowledge transfer mechanism to promote the unbiased
prediction capability of the final classifier Cx. As afore-
mentioned, each classifier specializes in distinguishing the
predicates, particularly within the newly-added group. In
order to preserve and translate this well-learned knowledge
to compensate for the under-fitting on the head classes, we
propose the Collaborative Knowledge Distillation (CKD),
whose objective function is defined as:

1 1 ~n
ﬁc}(pz@ Z W Z ﬁKL(W;?aWij)v
(mmn)eQ ' ™ (0i,0;)€D,
)




where Q denotes the set of pairwise knowledge matching
from the classifier C,,, to the classifier C,, (m < n). We
provide two alternatives, namely Adjacent and Top-Down
strategy, to configure the set Q (these two strategies are
illustrated in Figure 6 and Parameter Analysis). Note that
the output w; generated by the classifier C;, incorporates
new predicate classes which are not included in the previous
classification space P, , we utilize vAvZ to indicate the sliced
output by cutting off the incrementally-added classes which
are not included in P/, thus ensuring that VAVZ shares the
same dimension as w;}. L (-) is a regular Kullback-
Leibler Divergence loss, which is defined as:

L
Lrr (W, Wy) = —wanlogv’?/fl. (10)
=1

By taking the previous predicate probability output w;";
from the classifier C,, as the soft label, CKD forces the
current classifier C,, to mimic the prediction behaviour that
Cp, 18 expert in, thus can be treated as a “strong constraint”.

Ultimately, the objective function of our proposed Group
Collaborative Learning (GCL) is the combination of PCO
and CKD, which is defined as:

Lccr = Lpco +alckp, (11)

where « is the pre-defined hyper-parameters to weigh
the total loss Lgcr. By employing these two types of
constraint, we effectively mitigate the overwhelming pun-
ishments to the tail classes and compensate for the under-
fitting on the head ones, which benefits in establishing a
reasonable trade-off during the predicate predictions.

4. Experiments
4.1. Experimental Settings

Dataset. We present the experimental results on two
datasets: Visual Genome (VG) [16] and GQA [15]. VG
is the most widely-used benchmark for SGG, which is
composed of more than 108K images and 2.3M relation
instances. Following the prior approaches [3, 4, 17, 20,

—31,40,42,43,47,49], we adopt the most widely-used
VG150 split, which contains the most frequent 150 object
classes and 50 predicate classes. GQA is another vision-
and-language benchmark with more than 3.8M relation
annotations. In order to achieve a representative split like
VG150, we manually clean up a substantial fraction of
annotations that have poor-quality or ambiguous meanings,
and then select Top-200 object classes as well as Top-100
predicate classes by their frequency, thus establishing the
GQA200 split. For both VG150 and GQA200, we use 70%
of the images for training and the remaining 30% for testing.
We also follow [47] to sample a 5K validation set from the
training set for parameter tuning.

Tasks. To comprehensively evaluate the performance, we
follow three conventional tasks: 1) Predicate Classification
(PredCls) predicts the relationships of all the pairwise
objects by employing the given ground-truth bounding
boxes and classes; 2) Scene Graph Classification (SGCls)
predicts the objects classes and their pairwise relation-
ships by employing the given ground-truth object bounding
boxes; and 3) Scene Graph Detection (SGDet) detects all
the objects in an image, and predicts their bounding boxes,
classes and pairwise relationships.

Evaluation Metrics. Following [4, 17, 20,29, 30,42, 43],
we use mean Recall@K (mR@K) [3, 31], which computes
the average Recall@K (R@K) for each predicate class, to
evaluate the unbiased SGG. As R@K is easily dominated
by the head classes due to the extremely unbiased dataset,
mR@K could give a fair performance appraisal for both
head and tail classes, which is widely used as an unbiased
evaluation metric.

Implementation Details. We adopt a pre-trained Faster R-
CNN [25] with ResNeXt-101-FPN [39] provided by [30]
as the object detector. We employ Glove [24] to obtain the
semantic embedding. The object encoder and the relation
encoder contain four and two SHA layers, respectively. We
set the division threshold ;» = 4, and employ the Top-Down
strategy (each classifier is forced to learn the prediction
behavior from all its predecessors, see Figure 6 for more
details) to construct the pairwise knowledge matching set
Q. The hyper-parameter o which balances the optimization
objective is set to be 1.0. We optimize the proposed network
by the Adam optimizer with a momentum of 0.9. For all
three tasks, the total training stage lasts for 60,000 steps
with a batch size of 8. The initial learning rate is 0.001, and
we adopt the same warm-up and decayed strategy as [30].
One RTX2080 Ti is used to conduct all the experiments.

4.2. Compared Methods

We want to declare that our proposed method is not
only powerful in generating unbiased scene graphs, but also
applicable for a variety of SGG approaches. For the former,
we compare it with state-of-the-art approaches, including
re-produced IMP+ [40], KERN [3], GPS-Net [20], PCPL
[42], re-produced VTransE+ [49] and BGNN [17]. For
the latter, we adopt two typical baselines, namely Motifs
[47] and VCTree [31], to give a fair comparison with other
model-agnostic approaches, such as Reweighting [4], TDE
[30], CogTree [43], DLFE [4] and EBM [29].

Table 1 and Table 2 present the performance of different
approaches conducted on VG150 and GQA200, respec-
tively. We have several observations as follows: 1) Our
proposed SHA+GCL significantly outperforms all the base-
lines on all three tasks. To the best of our knowledge, our
work is the first to breakthrough the 40% precision in both
mR @50 and mR@ 100 on PredCls, and we also achieve the



Model PredCls SGCls SGDet
mR@20 mR@50 mR@100 | mMR@20 mR@50 mR@100 | mR@20 mR@50 mR@100
IMP+T - 9.8 10.5 - 5.8 6.0 - 3.8 4.8
KERN' - 17.7 19.2 - 9.4 10.0 - 6.4 73
GPS-Net' 17.4 21.3 22.8 10.0 11.8 12.6 6.9 8.7 9.8
pCPLT - 35.2 37.8 - 18.6 19.6 - 9.5 11.7
VTransE+ 13.6 17.1 18.6 6.6 8.2 8.7 5.1 6.8 8.0
SG-CogTree 229 28.4 31.0 13.0 15.7 16.7 7.9 11.1 12.7
BGNN - 304 32.9 - 14.3 16.5 - 10.7 12.6
Motifs 11.7 14.8 16.1 6.7 8.3 8.8 5.0 6.8 7.9
Motifs + Reweightg 14.3 17.3 18.6 9.5 11.2 11.7 6.7 9.2 10.9
Motifs + TDEg 18.5 25.5 29.1 9.8 13.1 14.9 5.8 8.2 9.8
Motifs + CogTreey 20.9 26.4 29.0 12.1 14.9 16.1 7.9 10.4 11.8
Motifs + DLFE, 22.1 26.9 28.8 12.8 15.2 15.9 8.6 11.7 13.8
Motifs + EBMy 14.2 18.0 28.8 8.2 10.2 11.0 5.7 7.7 9.3
Motifs + GCL 30.5 36.1 38.2 18.0 20.8 21.8 12.9 16.8 19.3
VCTree 13.1 16.7 18.1 9.6 11.8 12.5 5.4 7.4 8.7
VCTree + Reweighty 16.3 19.4 204 10.6 12.5 13.1 6.6 8.7 10.1
VCTree + TDE, 18.4 25.4 28.7 8.9 12.2 14.0 6.9 9.3 11.1
VCTree + CogTreeq 22.0 27.6 29.7 15.4 18.8 19.9 7.8 10.4 12.1
VCTree + DLFE,4 20.8 253 27.1 15.8 18.9 20.0 8.6 11.8 13.8
VCTree + EBMy 14.2 18.2 19.7 10.4 12.5 13.5 5.7 7.7 9.1
VCTree + GCL 314 37.1 39.1 19.5 22.5 23.5 11.9 15.2 17.5
SHA 14.4 18.8 20.5 8.7 10.9 11.6 5.7 7.8 9.1
SHA + GCL (ours) 35.6 41.6 44.0 19.6 23.0 24.3 14.2 17.9 20.9

Table 1. Performance comparison of different methods on PredCls, SGCls, and SGDet tasks of VG150 with respect to mR @20/50/100
(%). The superscript T denotes that the method employs Faster R-CNN with VGG-16 as the object detector, while the subscript d denotes
that the method is model-agnostic and targets to address the biased relationship predictions in SGG.

Model PredCls SGCls SGDet
mR 50/100 mR 50/100 | mR 50/100
VTransE 14.0/15.0 8.1/8.7 5.8/6.6
VTransE + GCL 30.4/32.3 16.6/17.4 | 14.7/16.4
Motifs 16.4/17.1 8.2/8.6 6.4/7.7
Motifs + GCL 36.7 / 38.1 17.3/18.1 | 16.8/18.8
VCTree 16.6/17.4 7.9/8.3 6.5/7.4
VCTree + GCL 35.4/36.7 17.3/18.0 | 15.6/17.8
SHA 19.5/21.1 8.5/9.0 6.6/7.8
SHA + GCL 41.0 / 42.7 20.6/21.3 | 17.8/20.1

Table 2. Performance comparison of different methods on three
tasks of GQA200 with respect to mR@50/100 (%).

best performance on SGCls and SGDet. 2) Motifs+GCL
and VCTree+GCL nearly double the performance in mean
Recall on all three tasks compared with Motifs and VCTree.
It demonstrates that the proposed GCL is model-agnostic
and can largely enhance the unbiased relationship predic-
tions. 3) Compared with Motifs+GCL and VCTree+GCL,
we witness an obvious performance gain in SHA+GCL. It
indicates that the proposed SHA module could facilitate
both the intra-modal refinement and the inter-modal inter-
action, thus leading to more accurate predictions. In conclu-
sion, SHA+GCL effectively addresses two aforementioned
concerns in SGG, i.e., insufficient modality fusion and
biased relationship predictions.

4.3. Ablation Study

As aforementioned, we propose the Stacked Hybrid
Attention (SHA) network to improve the object encoder
and the relation encoder, and propose the Group Collabo-
rative Learning (GCL) strategy, which employs the Parallel
Classifier Optimization (PCO) as the “weak constraint” and
Collaborative Knowledge Distillation (CKD) as the “strong
constraint”, to guide the training of the decoder. In order
to prove the effectiveness of the above components, we test
various ablation models on VG150 as follows:

¢ w/0-GCL: To evaluate the effectiveness of GCL, we let
the relation decoder be a one-layer classifier, where a
regular Cross-Entropy loss is performed.

¢ w/o PCO&CKD: To evaluate the effectiveness of PCO
in GCL, we remove the PCO loss and CKD loss, and
only employ the Median Re-Sampling strategy and a
regular Cross-Entropy loss in the optimization step.

e w/o CKD: To evaluate the effectiveness of CKD in
GCL, we remove the CKD loss but retain all the
classifiers to compute the PCO loss.

e w/o CA or w/o SA: To evaluate the effectiveness of
SHA, we remove either the Cross-Attention (CA) unit
or the Self-Attention (SA) unit in every SHA layer.

Table 3 presents the results of all the ablation mod-
els. We have several observations as follows: 1) Com-
pared with w/o-GCL, SHA+GCL nearly doubles the per-



Model PredCls SGCls SGDet Model PredCls SGCls SGDet

mR 50/100 | mR 50/100 | mR 50/100 m Strategy mR 50/100 | mR 50/100 | mR 50/100
w/o - GCL 18.8/20.5 109/11.6 7.8/9.1 3 Adjacent 40.0/42.4 | 225/234 | 16.8/19.2
w/o - PCO&CKD | 35.2/374 | 20.1/21.2 | 14.6/16.9 4 Adjacent 41.0/43.5 | 23.0/239 | 17.3/19.7
w/o - CKD 393/41.7 | 22.0/23.2 | 16.5/19.0 5 Adjacent 39.4/41.7 | 21.8/23.0 | 16.7/19.1
w/o - CA 390.8/42.5 | 22.6/23.6 | 16.8/19.3 3 Top-down | 40.9/43.2 | 229/23.8 | 17.0/19.9
w/o - SA 39.2/41.5 | 22.6/23.7 | 17.5/20.1 4 Top-down | 41.6/44.0 | 23.0/24.3 | 17.9/20.9
SHA + GCL 41.6/44.0 | 23.0/24.3 | 17.9/20.9 5 Top-down | 39.7/42.0 | 23.1/23.8 | 16.9/19.6

Table 3. Ablation study of the proposed method on VG150.
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(b) R@100 of all the predicate classes of w/o-CKD and SHA+GCL on VG150.
Figure 5. R@100 of 50 predicate classes on PredCls on VG150.

formance. Moreover, in Figure 5a, we compare w/o-
GCL and SHA+GCL with respect to R@100 of all the
predicate classes. As can be observed, SHA+GCL obvi-
ously improves the performance on most of the predicate
classes, only with an acceptable decay on the head classes
in Group 1 and Group 2, showing a powerful capability in
generating unbiased scene graphs. 2) Compared with w/o-
PCO&CKD, w/0-CKD evidently improves the prediction
performance, demonstrating that the “weak constraint”,
namely gathering gradients from all the classifiers, would
facilitate the convergence of the final classifier. 3) Com-
pared with w/o-CKD, we witness an obvious performance
gain in SHA+GCL. Moreover, we compare w/o-CKD and
SHA+GCL on the detailed precision towards every pred-
icate class on VG150. As shown in Figure 5b, CKD
effectively prevents the model from sacrificing much on the
head classes, as well as achieves a comparable performance
towards the tail predictions. It demonstrates that the “strong
constraint”, namely a knowledge transfer paradigm, could
effectively compensate for the under-fitting on the head
classes by preserving the discriminating capability learned
previously, and thus benefits in achieving a reasonable
trade-off. 4) From the last three rows in Table 3, we
witness an obvious performance decay when removing
either the CA unit or the SA unit. It verifies that combining
both attentions would effectively alleviate the insufficient
modality fusion, thus leading to more accurate predictions.

Table 4. Parameter analysis towards the threshold p and the
pairwise knowledge matching strategies of GCL on VG150.
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Figure 6. Illustration of three configurations of the balanced group
divisions according to the threshold y (top), and two alternatives
of the pairwise knowledge matching strategy (down).

4.4. Parameter Analysis

As aforementioned, the threshold i and the organization
strategy would influence the performance of GCL. As
Figure 6 illustrates, for the former, we set 4 =3, 4, and 5,
and obtain 6, 5, and 4 group divisions, respectively. For
the latter, we provide two alternatives, namely Adjacent
and Top-Down strategy, whose difference is whether each
classifier could learn the knowledge from its nearest prede-
cessor (Adjacent) or from all the predecessors (Top-Down).

Table 4 presents the performance comparisons, where
1 = 4 and the Top-Down strategy is the best combination.

5. Conclusion

In this work, we declare two concerns that restrict the
practical applications of SGG, namely insufficient modality
fusion and biased relationship predictions. To address
such deficiency, we propose the Stacked Hybrid-Attention
network and the Group Collaborative Learning strategy. In
this way, we establish a new state-of-the-art in the unbiased
metric and provide a model-agnostic debiasing method. In
the future, we plan to explore more robust group dividing
methods and devise more knowledge distillation strategies.
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1. Introduction

In this supplementary material, we present more anal-
yses, experiments, and visualization results, as well as
discuss the limitations and future work of our method.

2. Parameter Statistics

We compare the total number of parameters between
three baseline methods (i.e., Motifs, VCTree, and SHA) and
their enhanced versions that are equipped with our model-
agnostic GCL in Table 5. As can be observed, compared
with the original methods which possess a massive number
of total trainable parameters (about 200M), GCL only addi-
tionally introduces a limited number of parameters (about
2M), which could hardly influence the overall training
procedure.

3. Detailed Performance

We present the complete results of our experiments
employing the regular Recall@K [21], the unbiased Mean
Recall@K [3, 31], and their mean [20] on all three tasks
(i.e., PredCls, SGCls, and SGDet) on VG150 [16] and
GQA200 [15] dataset in Table 6, where K € {50,100}.
Note that all the methods are implemented with a pre-
trained Faster R-CNN [25] with ResNeXt-101-FPN [39]
provided by [30] as the object detector, thus we could give
a fair comparison to prove the superiority of our method.

From Table 6, we observe that 1) our proposed
SHA+GCL achieves the best performance on all three tasks
towards the unbiased metric mR@XK in both two datasets.
In VG150, we breakthrough the 40% precision in both
mR@50 and mR@100 on PredCls, and 20% precision in
mR@100 on both SGCls and SGDet, thus establishing
a new state-of-the-art in the unbiased metric. 2) Our
improvement towards the relation decoder, namely GCL
strategy, is model-agnostic and could largely enhance the
unbiased SGG. In both VG150 or GQA200, the method
equipped with GCL nearly doubles the performance
compared with the original one, showing the outstanding
capability in generating unbiased scene graphs.

4. Visualization Results

To get an intuitive perception of the superior perfor-
mance in generating unbiased scene graphs of our proposed
GCL, we visualize several PredCls examples generated
from the biased SHA and the unbiased SHA+GCL. As
shown in Figure 8, the model employing the proposed
GCL strategy prefers to providing more informative and
specific relationship predictions (e.g., lying on and riding)
rather than common and trivial ones (e.g., on and has),
e.g., “personl-riding-elephant” in the top-right example and
“train-pulling-car” in the bottom-left example. Moreover,
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Figure 7. The group-incremental configuration (left) may not
be the only alternative to fulfill the “conquer” step in GCL. For
example, the group-split configuration (right) is another promising
strategy. Therefore, we aim to explore more robust group dividing
methods and classifier configuration strategies in the future.

the model equipped with our model-agnostic GCL could
also capture potential reasonable relationships, such as
“personl-watching-person2” in the top-right example and
“sidewalk-beside-train” in the bottom-left example. In a
nutshell, the proposed GCL could enhance the unbiased
relationship predictions, thus achieving more informative
scene graphs to support various down-stream tasks.

5. Limitations and Future Work

In this section, we would like to discuss the limitations
of our method, based on which we provide several potential
directions to further improve our SHA+GCL.

5.1. More Configurations Could be Further Ex-
plored

As aforementioned, we follow the intuition of “divide-
conquer-cooperate” to address the biased relationship pre-
dictions. In the second step, namely “conquer”, we borrow
the idea from class-incremental learning [14] and employ
the group-incremental configuration. Actually, we employ
this configuration mainly due to its simplicity and effi-
ciency, as we could directly leverage the final classifier that
covers all the candidate classes to obtain the predictions
in the evaluation stage. However, we should argue that
it is not the only alternative to fulfill the “conquer” step.
Therefore, in the future, we aim to explore more robust
group dividing methods as well as classifier configuration
strategies to promote the unbiased SGG, e.g., the group-
split configuration in Figure 7.

5.2. “Strong Constraint” Could be Further En-
hanced

As aforementioned, in the “cooperate” step, we use the
collaborative knowledge distillation to establish an effective
knowledge transfer mechanism, where a regular Kullback-
Leibler Divergence loss is employed. However, since var-
ious novel methods have been proposed in the knowledge
distillation area, we could further enhance our GCL by
devising more efficient strategies, thus strengthening the
“Strong Constraint” and promoting the unbiased SGG.



Model Fixed Trainable Model Fixed Trainable Model Fixed Trainable
Motifs 158.7M  208.5M VCTree 158.7M 199.8M SHA 158.7M  228.8M
Motifs + GCL 158.7M  210.5M VCTree + GCL  158.7M  201.8M SHA + GCL 158.7M  230.9M

Table 5. Comparison of different methods on the number of parameters. “Fixed” counts the number of parameters that belong to the
pre-trained object detector, and “Trainable” counts the number of parameters that can be updated during the training procedure.

Evaluation on Visual Genome Dataset

Model PredCls SGCls SGDet MEAN
R@50/100 mR@50/100 | R@50/100 mR@50/100 | R@50/100 mR@50/100 | R-M mR-M
IMPT [29] 61.1/63.1 11.0/11.8 37.4/38.3 6.4/6.7 23.6/28.7 33/4.1 420 72
GPS-Net' [17] 652/67.1 152/16.6 37.8/39.2 8.5/9.1 31.1/35.9 6.7/8.6 46.1 10.8
SG-CogTree [43] 38.4/39.7 28.4/31.0 229/234 157/16.7 19.5/21.7 11.1/12.7 27.6 193
BGNN [17] 59.2/61.3 30.4/329 37.4/38.5 14.3/16.5 31.0/35.8 10.7/12.6 439 19.6
VTransE [30] 65.7/67.6 14.7/15.8 38.6/394 8.2/8.7 29.7/34.3 5.0/6.0 459 9.7
VTransE + TDE [30] 48.5/43.1 24.6/28.0 257/28.5 129/14.8 18.7/22.6 8.6/10.5 312  16.6
VTransE + GCL 354/37.3 34.2/36.3 25.8/26.9 20.5/21.2 146/17.1 13.6/15.5 262 235
Motifs [30] 65.2/67.0 14.8/16.1 38.9/39.8 8.3/8.8 32.8/37.2 6.8/7.9 46.8 10.4
Motifs + Reweight [4] 54.7/56.5 17.3/18.6 29.5/31.5 11.2/11.7 24.4/29.3 9.2/10.9 377 132
Motifs + TDE [30] 46.2/51.4 25.5/29.1 2771299 13.1/14.9 16.9/20.3 8.2/9.8 32.1 16.8
Motifs + PCPL' [4] 54.7/56.5 24.3/26.1 353/36.1  12.0/12.7 27.8/31.7 10.7/12.6 404 164
Motifs + CogTree [43] 35.6/36.8 26.4/29.0 21.6/222 149/16.1 20.0/22.1 104/11.8 264 18.1
Motifs + DLFE [4] 52.5/542 269/28.8 32.3/33.1 152/159 2547294 11.7/13.8 37.8 18.7
Motifs + EMB [29] 652/67.3 18.0/19.5 39.2/40.0 10.2/11.0 31.7/36.3 77193 46.6 12.6
Motifs + GCL 42.7/444  36.1/38.2 26.1/27.1 20.8/21.8 184/22.0 16.8/19.3 30.1 255
VCTree [30] 65.4/67.2 16.7/18.2 46.7/47.6 11.8/12.5 31.9/36.2 7.41/8.7 49.2 126
VCTree + Reweight [4] 60.7/62.6 19.4/20.4 4237435 125/13.1 27.8/32.0 8.7/10.1 44.8 14.0
VCTree + TDE [30] 472/51.6 254/28.7 254/279 122/14.0 19.4/23.2 93/11.1 325 16.8
VCTree + PCPLT [4] 56.9/58.7 22.8/24.5 40.6/41.7 152/16.1 26.6/30.3 10.8/12.6 425 17.0
VCTree + CogTree [43] 44.0/454 27.6/29.7 309/31.7 18.8/19.9 18.2/204 10.4/12.1 31.8 19.8
VCTree + DLFE [4] 51.8/53.5 253/27.1 33.5/34.6 18.9/20.0 227/263 11.8/13.8 37.1 19.5
VCTree + EMB [29] 64.0/658 18.2/19.7 447/458 12.5/13.5 31.4/35.9 7.71719.1 479 135
VCTree + GCL 40.7/427 37.1/39.1 27.7128.7 22.5/23.5 1747207 152/17.5 296 258
SHA 64.3/66.4 18.8/20.5 38.0/39.0 109/11.6 30.6/34.9 7.8/9.1 455 13.1
SHA + GCL 35.1/37.2 41.6/44.1 22.8/239 23.0/24.3 149/182 17.9/20.9 254  28.6
Evaluation on GQA Dataset
Model PredCls SGCls SGDet MEAN
R@50/100 mR@50/100 | R@50/100 mR@50/100 | R@50/100 mR@50/100 | R-M mR-M

VTransE 55.7/579 14.0/15.0 33.4/34.2 8.1/8.7 27.2130.7 5.8/6.6 399 96
VTransE + GCL 355/374 30.4/323 229/23.6 166/17.4 153/18.0 14.7/16.4 254 214
Motifs 65.3/668 164/17.1 34.2/34.9 8.2/8.6 28.9/33.1 6.4/7.7 439 109
Motifs + GCL 4457462 36.7/38.1 23.2/24.0 17.3/18.1 185/21.8 16.8/18.8 297 242
VCTree 63.8/657 166/17.4 34.1/34.8 79/8.3 28.3/31.9 6.5/7.4 43.1  10.5
VCTree + GCL 44.8/46.6 35.4/36.7 23.7/245 17.3/18.0 17.6/20.7 156/17.8 29.6 236
SHA 63.3/652 19.5/21.1 32.7/33.6 8.5/9.0 25.5/29.1 6.6/7.8 416 121
SHA + GCL 427771445 41.0/42.7 21.4/222 20.6/21.3 148/179 17.8/20.1 273 273

Table 6. Detailed performance comparison of different methods on PredCls, SGCls, and SGDet tasks of both VG150 and GQA200 with
respect to R@50/100 (%), mR@50/100 (%), and their mean (%). R-M and mR-M denote the mean on all three tasks over R@50/100 and
mR @50/100, respectively. The optimal results from the same baseline (i.e., VTransE, Motifs and VCTree) in VG150 are underlined. The
global optimal results over all the methods in VG150 and GQA200 are in bold. The superscript { denotes that the method is reproduced.
Note that all the methods are implemented on the same object detector, i.e., a pre-trained Faster R-CNN with ResNeXt-101-FPN.



Visualization Results for VG150 Dataset
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Figure 8. Qualitative comparisons between SHA and SHA+GCL with regard to R@20 on PredCls setting. Green edges represent the
ground truth relationships that are correctly predicted, red edges represent the ground truth relationships that are failed to be detected, and
purple edges represent the reasonable relationships which are predicted by the model but are not annotated in the ground truth.
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